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0. MOTIVATION

Let T be a free particle in IR® with spin 1/2. We want to study its motion in special relativity. If we denote its
(relativistic) mass, Energy and momentum by m, E and p, respectively, then we have the relation

(0.1) E = y/c2p? + m2c4,

where c denotes the speed of light.

Now we want to additionally study T quantum mechanically which means we have to describe T by a wave
function ¢ = 7 : R x R3 3 (t,x) — (t,x) € C. Here, the associated function (t,x) — [¢(t,x)|* € R is the
density of the probability law that the particle T can be found at x at time t. The energy and momentum are
no longer scalars associated with T but become unbounded operators acting on appropriate Hilbert spaces of
wave functions,

., O
Eyp = zha,
py = —ihgrad .

If one wants to combine the relativistic equation (0.1) with the quantum mechanical description (0.2), one
concludes that wave functions must (formally) satisfy the equation

ihaa—lf =V 2h2A + m2ctyp,

where A denotes the Laplacian A = — Z?:l @ /ox2. We thus face the problem of finding the square root of a second order
differential operator. Setting all constants to 1 (as mathematicians like to do), we specifically want to find the
square root D = /A of the Laplacian. There are many ways in which this can be done, e.g., via the functional

(0.2)
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calculus, but for many reasons it is desirable that D be a differential operator itself. This means of course that
D must be of first order. We take the ansatz

3500
D= .
;%8961

The requirement D? = A holds if and only if

’y%:'y%:'ygz—l and Yivi+vjri =0, fori #j.

These equations do not posses a solution in C. They do, however, if we allow the -; to be elements of some
algebra. The smallest algebra that contains elements satisfying these relations is the one of complex 2 x 2-
matrices. Specifically, the matrices

(i 0 (0 -1 (0 i
M= o —i)’ T2 = 1 0 ’ Y3 = i 0

do satisfy above equations. Now D becomes an operator acting on C?-valued functions, i.e. elements of
CY(R3,C?), and the equation D? = A has to be understood component-wise.

This discussion was specific to R3. In the following lecture, we will learn how to define the Dirac operator
D on (almost) any Riemannian manifold and study its basic properties.

1. BASICS
1.1. Lie groups.
Definition 1.1. A Lie group is a C*-manifold G which is also a group with the property that
GxG>(ab)—a-beG
Gsaa—aleG

are smooth.

Example 1.2. (i) (R",+), (C",+), (C\{0} = C*,-).

(i) (S* = {el'|te R} < C*,").

(iii) If G, H are Lie groups, then G x H is a Lie group with the product manifold and product group structure.

(iv) (Gl(n;C), ) since Gl(n; C) is an open subset of C" =~ R and matrix multiplication and inversion are polyno-
mials in the entries of matrices, hence smooth. More generally, (Gl(n;1H), -), where H is the field of quaternions.

(v) Any subgroup / submanifold of any Lie group G which also happens to be a submanifold / subgroup. For G =
Gl(n;C) or G = Gl(n;H) the most prominent examples are: Gl(n;R), Sl(n; C), Sl(n; R), U(n), O(n), Sp(n),
SU(n), SO(n). The groups O(n), U(n) and Sp(n) are special cases of the following more general construction:
Let K be either R, C or H and s : K" x K" — K a bi-/sesquilinear, nondegenerate (skew-)symmetric / (skew-
Jhermitian form. Then O(s) := {A € M(n,n;K) |s(AX, AY) =s(X,Y) forall X,Y € K"} is a Lie group.

(vi) The Heisenberg group

1 xt z
Hyyqq = {’y(x,y,z) = (O E, y) |x,yeR",z¢€ ]R} c Gl(m;R).
0 0 1

As a manifold, Hy,, 1 is diffeomorphic to R*"*1. Group product and inversion are given by
(%Y, 2) (U, 0,w) =y (X + 1,y + 0,2+ W+ X, V),
Y6 y,2) 7 = 1= Y =2+ (X Yeuat) -

Definition 1.3. (i) Forae Gthemap L, : G 3b — a-b e G is called left-translation by a . L, is a diffeomorphism

with inverse Ly = L,—1. Analogously, R, : G 3 b+ b -a € G right-translation by a .
(ii) A vector field X € V(G) is called left-invariant <

(XoL,=d(Ls)oX VaeG,

ie, Xpp = d(La)pXp forall a,b € G. In other words, X is L,-related to itself for all a € G.
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Remark 1.4. The space of left-invariant vector fields on G is canonically identified with T.G, the tangent space to G at
the identity:

T.G 3 X — (vector field }N(given by }NCH = d(Ly)eXe)
T.G 3 Y, < Y € {left-invariant vector fields on G}
These two maps are vector space isomorphisms and inverses of each other.
Lemma 1.5. If X, Y are left-invariant vector fields on G, then [X, Y] is again a left-invariant vector field.
Proof. Leta € G. Then X is L,-related to itself, and so is Y. Hence, [X, Y] is L,-related to itself. g

Corollary and Definition 1.6. (i) A Lie algebra over R is a real vector space V together with a bilinear map [-, -] :
V x V. — V which is alternating and satisfies the Jacobi identity, ie., [X,Y] = —[Y,X] and [X,[Y,Z]] +
Y, [Z,X]]+[Z,[X,Y]]=0forall X,Y,Ze V.
(ii) The vector space g of left-invariant vector fields on G is by Lemma 1.5 a Lie algebra over R.

Remark 1.7. The tangent space T.G is canonically identified with g by Remark 1.4. This means that T,G inherits a Lie
algebra structure from g!

Explicitely: If X,Y € T,G, then [X, Y] := [left-inv. ext. X of X, left-inv. ext. Y of Y],.
One often encouters the notation g = T,G, which should always be understood in the above sense.

Lemma 1.8. Let X be a left-invariant vector field on G and ' its flow. If D (e) is defined for all t € (—¢, €), then so is
L (a), and we have

D(a) =a- (o).

Proof. We need to check that t — a - @) (¢) is an integral curve of X starting in a. We have

9 (0 @k(e) = & (L@ (@) = d(La)ay ) S Phle)

= dLa)at (o) Xot (o) = Xowl(e) -
where the second equality follows from the chain rule and the last one from X being left-invariant. O

Corollary 1.9. Any left-invariant vector field X on G is complete , i.e., D (a) is defined for all t € R and all a € G.

Proof. Let e > 0be as in Lemma 1.8 and let a € G. Suppose that
to := sup{t| Px(a) is defined at least until t} < co.

Letb := @é‘g_c/ *(a). By the previous lemma, L (b) is defined at least for t € (—¢, to +£/2), which is a contradiction
to our assumption ¢y < 0. O

Definition 1.10. (i) A Lie group homomorphism f : G — H is a smooth group homomorphism between Lie groups
Gand H.
(ii) A (real / quaternionic) representation is a Lie group homomorhism f : G — Gl(V), where V is a complex (real /
quaternionic) vector space.
(iii) A one-parameter subgroup in G is a Lie group homomorphism « : (R,+) — G, i.e., a is smooth and satisfies
a(s+t) =a(s) - a(t) foralls,t e R.
Proposition 1.11. The map {1-parameter subgroups in G} 3 a — &(0) € T, G is a bijection.

Proof. Define

A:T,G = g3 X (t > ®d(e)) € {1-parameter subgroups in G}
T.G 3 &(0) < a € {1-parameter subgroupsin G} : ¥.

e ¥oA =id: %|t:0d>§((e) = X..
e Ao¥Y = id: We have to show that « is indeed the integral curve of the left-invariant vector field
associated with &(0):
a(t) = 4 a(t+s) = 4 a(t) - a(s) = d(Ly(p)e(0)
ds [s=0 ds [s=0 a(t))e
= (left-invariant vector field associated with &(0)),) -
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O

Notation 1.12. The Lie exponential map e : g — G maps X € T,G = g to e'X := @l (e). Thus, t — e'X is the
1-parameter subgroup in G associated with X as in Proposition 1.11.

Proposition 1.13. If X,Y € g, then
d d tX _sX _—tX
; - — = ) .
X, Y]e dt t=0ds|s=0

tX sX —tX

Note that for fixed f = tg, s — eXe’Xe d — etXesXe=X iga

is a curve in G starting in e € G, hence t — 5]s=0

curve in T,G.
Proof. Denote by L the Lie derivative. By its definition, we have
d ¢ d d _

[X,Y]e = (£xY), = d (%) ot (¢) Yaty(e) = a“:O&'S:O‘I’X

= S o @S ol (e) .

By Lemma 1.8 we have
D (DY (D (0) = Dy (DY (X)) = DY (DY (e - 0) = Dy (X - DY (e))
= otX. (D;(t(esY) — ofX . o8Y o tX
O
Example 1.14. Let G = Gl(n;C) < M(n,n;C), e = E, the n x n identity matrix, C € T,G = M(n,n;C), A € G.
Note that for small t, det(E, + tC) # 0, i.e., E,, + tC € Gl(n; C).
d
dt|t=0
Hence, the left-invariant vector field X associated with C is given by XG = A-C.
Next, we compute the Lie bracket of C,D € T,G = M(n, n; C). We have
d d

_xC ¥D1 _ Dy vC cy ybD _ ¢ D . a C
(/D) = X, XPle =d(X?)eXE —d(X)X) = 7 XP (B +1C) = XC(En D)

d(LA)gC = LA(En + tC) = AC.

=C-D-D-C,

where we have interpreted X© and XP as maps from the open set Gl(n;C) < M(n,n;C) to M(n,n;C) = 2", hence
their Lie bracket is given by the difference of their directional derivatives with respect to each other.

At last, we compute the Lie exponential map of G. For C € T,G, the matrix exponential map t — exp(tC) = E, +
tC +14(tC)% + ... is a T1-parameter subgroup in G (exp((s +t)C) = exp(sC) - exp(tC)) with dfat;_o exp(tC) = C, s0
it must be the one associated with C:

e'C = exp(tC) .

The above formulae for [C, D] and e'C also hold for any Lie subgroup of G!

Lemma 1.15. Let ® : G — H be a Lie group homomorphism.
(i) ®(e!X) =e!d®X forallte R, X € T,G.
(i) [dP.X,dD.Y] = dP.[X, Y], hence dP.T.G — T.G is a Lie algebra homomorphism , i.e., a vector space homo-
morphism which preserves Lie brackets.

Proof. (i) We are done when we show that the left hand side is indeed a 1-parameter subgroup in H with
the correct initial vector: ®(e*THX) = d(esX . etX) = B (e5X) . D (e!X) with initial vector %HZOCD(etX) =
dPe(§,_ge') = dPeX.

(i)
d d _ (i d d _
DX dd.Y] = — -~ td®, X sd®, X ,—tdP, X SOl el o tX o sY ) tX
[dPeX, dP.Y] dfji—0ds|s=0" © © dt t=0ds|s=0 (D)o )ele)
d d d d
9 4o (2 XasYo=tX) _gep, (L <L tX SY ,—tX
dtji=0 ° <dsS_oe ¢ e\ dfjmodsso” © €

= dd)e([X, Y]) s
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where we have used Proposition 1.13 in the first and last step.

Definition 1.16. (i) Forae GletI,:=L,oR;':G3b— a-b-a~' e G be conjugation by a.
(ii) Forae Glet Ad; :=d(lp)e: 9= T.G - T,G ~ g.
(iii) For X e gletadyx :=[X,']:g23Y — [X,Y] € g.

Remark 1.17. (i) I, is a Lie group automorphism , i.e., a diffeomorphism and a group automorphism. Moreover,
Aut(G) is a Lie group and G 3 a — I, € Aut(G) is a Lie group homomorphism.

(ii) Ad, : g — gis by Lemma 1.15(ii) a Lie algebra automorphism . Moreoever, Ad : G 5 a — Ad, € Aut(g) < Gl(g)
is a Lie group homomorphism, where Gl(g) is the group of linear transformations of the vector space(!) g.

(iii) By the Jacobi-identity, we have adx[Y,Z] = [[X, Y], Z] + [Y,[X, Z]] = [adx Y, Z] + [Y,adx Z]. That is, adx :
g — ¢ is a Lie algebra derivation , i.e., a vector space endomorphism ¢ € End(g) with ¢[X,Y] = [¢X, Y] +
[X, 9Y]. Moreover, ad : g 5 X — adx € Der(g) is a Lie algebra homomorphism, where the Lie bracket on Der(g) is
given by [¢, Y] = pop —po ¢ and adx y] = adx cady —ady oadx = [adx, ady].

Lemma 1.18. Let X,Y € g =~ T,G. Then

d
a|t=0 AdefX = adX .
Proof.
d d d d d —tx 113
“ A Y — — - sYy _ & -~ tX . sY | tX 1.4 X Y] = Y.
df|t=0 derx df |t=0ds|s=0 ex(e”) dt|t:OdS|s:Oe ¢ e [X,Y] = adx

Corollary 1.19. Apply Lemma 1.15(i) to @ := Ad : G — Aut(g) < Gl(g):

Adgix = e'dAdeX — otadx — exp(tady) = id +tady +2/412 ad% + ...
and
d(Ad). = ad .

Summary .

g _ad Der(g) = End(g)

\Le' \Le‘—exp J{e‘—exp

G —24 Aut(g) —=— Gl(g)

1.2. Clifford Algebras.

Definition 1.20. Let K be a field with char K # 2, V a finite-dimensional K-vector space and q a quadratic form on V.
We call (C, 1) a Clifford algebra for (V,q) if

(i) C isan associative, unital K-algebra.
(ii) 1: V — Cis a K-linear map with

1(v)? = —q(v) - 1c forallve V.
(iit) If Ais any associative, unital K-Algebra for which thereis a map j : V. — A with
(1.1) j(0)? = —q(v) -4 forallveV,

then there exists a unique K-algebra homomorphism ]~ C — A such that

C ~
N
% J A

is commutative.
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Proposition 1.21. For any (V,q) there exists a Clifford algebra (C, 1) unique up to canonical isomorphism. Moreover,
1is injective and {1c} v (V) < C generates C.

Proof. Let us first show uniqueness of the Clifford algebra. This is a standard argument using the universal
property Definition 1.20(iii). Suppose we are given two Clifford algebras (C,:) and (C’, /). By definition, there
exist unique maps 7: C’ — C with 7o/ = rand / : C — C’' with /o1 = /. The map io/ : C — C satisfies
Todor=Tol =1 Using Definition 1.20(iii) a third time, now with A = C and j = 1, we see that id¢c oz = 1. By
uniqueness, we have 7o // = idc. Analogously, / o7 = idc. Hence, (C, ) is unique up to canonical isomorphism.

Next, we show that (C, ) actually exists. Let 7(V) = @2, V& be the tensor algebra of V. Define Z as the
two-sided ideal generated by the set

{v@v+q(v)|ve V}

and C := T(V)/Z. Let © : T(V) — C be the canonical projection and define ¢ : V — T(V) 55 C, the
concatenation of the injection V < 7 (V) and the projection 7.

Since 7 is a two-sided ideal, C inherits an associative, unital algebra structure from 7 (V). Furthermore, by
the very definition of C and ¢, we have ((v)? = —q(v) - Ic forallv e V.

Let now be j : V — A be linear map into an associative, unital K-algebra with (1.1). By the universal
property of the tensor algebra, j extends uniquely to a K-algebra homomorphism j : 7(V) — A. Since j
satisfies (1.1), we have Z < ker j. Hence, j descends uniquely to a map ]~ C — A satisfying 70 L=j.

To show that ¢ is injective, it suffices to prove that V. nZ = {0}. This is a simple argument by induction

over the degree of tensors. Finally, since 7 (V) is generated by Vand 1 € K = Ve Cis generated by (V) and
1c. O

Remark 1.22. (i) We will from now on denote the unique Clifford algebra associated with (V,q) by (C(V,q),t) and
view V' as a subspace of CL(V, q) by virtue of 1. Moreoever, we will write 1 € CE(V, q) instead of Ley(y ).
(ii) If b : V x V e (v,w) — 12(q(v + w) — q(v) — q(w)) € K denotes the symmetric bilinear form associated with q,
we have

‘v~w+w-v=—2b(v,w)-1 forallv,weV‘

in CU(V,q). In particular, if V has K-dimension n and (ey, . .., e,) is a basis of V that diagonalizes b, then

e; =—qle;) forall i=1,...,n and ei-ej+ej-e=0 forall 1<i#j<n.

Definition 1.20(iii) says that C{(V, q) is the smallest associative, unital algebra containing V and satisfying these
relations.

(iii) Let V,W be K-vector spaces, equipped with quadratic forms q and r, respectively. Applying Definition 1.20(iii)
to 1y o f for a K-linear map f : V. — W which satisfies f*r = q (i.e. r(f(v)) = q(v) for all v € V) shows
that f extends uniquely to an algebra homomorphism f : C{(V,q) — CC(W,r). The uniqueness assertion in
Definition 1.20(iii) also implies that, given another linear map g : W — U into a vector space U with a quadratic

form s which satisfies g*s = r, we have go f = g o f.
Definition 1.23. Let V be a K-vector space and q : V — K a quadratic form with associated symmetric bilinear form
b:VxV->K

(i) Denote by o € Aut(CL(V,q)) the unique continuation of —idy € O(b). Explicitely, a : C¢(V,q) — CL(V,q) is the
unique K-linear map which satisfies

w(vy -0y v) = a(v1) - a(vy) - - a(vg) = (=01 -0y -0 forall keNg,v,...,00€V.

In particular, o = id.
(ii) Fori = 0,1 define CL(V,q) := {xeCl(V,q)|a(x) = (—1)ix}, ie., CL(V,q)! is the (—1)'-eigenspace of a, and

CU(V,q) = CUV,q)° ®CUV, q)".
Multiplication in C{(V, q) satisfies

CU(V,q)' - CU(V,q)) < CO(V,q)i+imod 2
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Remark 1.24. (i) A K-algebra A with a splitting A = A° ® A such that multiplication in A obeys the rule A* -
Al AT is called a Z,-graded algebra . We call A° the even part and A' the odd part of A and we call

deg x := i the degree of x € A’ . Note that A® is always a subalgebra of A.

(i) Given two Zy-graded K-algebras A and B, their tensor product A® B is the K-algebra whose underlying K-vector
space is the vector space tensor product A® B with multiplication a®b-a' @b’ = a-a’ @b - V'. Unfortunately, A®
BB is in general not a Z,-graded algebra. To produce a Zy-graded algebra, we use the Z,-graded tensor product AQB
whose underlying vector space is again the vector space tensor product A ® B and whose multiplication is defined
on pure tensors of pure degree by

(1.2) a®b-d @V = (—1)desbdegd’y /@ p.p

The Z,-grading of AQB is given by
(ARB)? = A’@B°+ A'@ B,
(A&B)' = A@B'+ A'@ B°.

Proposition 1.25. Let V be a K-vector space with quadratic form q and associated symmetric bilinear form b. Assume
we are given a b-orthogonal splitting V. = V1 @ V3, i.e., b(v1,vp) = 0 for all v1 € V1, v9 € V, (equivalently q(v1 +vp) =
q(v1) + g(v2)). Then there is a natural isomorphism of Clifford algebras

CL(V,q) — CL(V1,q1)RCL(V2, q2),
where q; := q)y, : V; — Kis the restriction of q to V.

Proof. Definej : V.= Vi®Va 301 +0 — 01 ®1+1®vs € CU(V1,41)RCl(Va,q2). Then, we have for all
v+ e Vi@ Vaby (1.2)

j(vl—f—vz)z = (U1®1+1®02)2 :U%®1+1®02+01®02—01®02 =—q(v1)-1®1—gq(v)1®1
=—q(v1+1)1®1.

Hence, by Definition 1.20(iii), j extends uniquely to an algebra homomorphism j : C4(V, q) — CL(V4, 41)RCE(Va, 42).
To see that 7is bijective, we construct the inverse homomorphism. Let g; : V; — C{(V, q),i = 1,2, be the concate-
nation of the inclusion V; < V and the inclusion V < C{(V, ). Then g; extends to an algebra homomorphism
g :Cl(V;,q;) — CL(V,q). The map g : Cl(V1,q1)RCE(Va, q2) 2 xRy — §1(x) - $2(y) € CL(V, q) is the inverse off
It suffices to check this on pure tensors of vectors from V; and V), as those generate C/(V;, q1)®C€ (V2,42) and

hence determine g uniquely.
O

Definition 1.26. Let V be a K-vector space and q a quadratic formon V. Let t : T (V) — T (V) be the K-linear map
given on pure tensors by

Ho1®@®...0U) =0 QU1 RQ...Q001.
Then t preserves the ideal Z from the proof of Proposition 1.21 and thus descends to a K-linear map
oeow,q) - cev,g),

the transpose . Note that ! is an algebra antiautomorphism , ie., (x-y)! = y'-x for all x,y € C{(V,q), and an
involution, i.e., (x')! = x forall x € CL(V, q).

With an eye on Riemannian manifolds we are interested in two particular Clifford algebras.

Notation 1.27. Let g, : R" 5 x — 3 ; x? € R be the standard positive definite quadratic form on R" and g5 : C" 5
z— Y, 2% € C the standard quadratic form on C". We let

o Cly =CUR",qy),

o Cl, = Cl(C",q5).

Remark 1.28. It follows from Definition 1.20(iii) that the complexification C¢,, ®R C of Cl,,, together with the complex
extension of qy, is isomorphic to Cly. In particular, from now on we will view C¢y, as a subalgebra of Cl,, and think of
Cly, as Cly, with complex coefficients.

Proposition 1.29. There are algebra isomorphisms Cly, = C£9 41 and Cly = ce Iy



8 SEBASTIAN BOLDT

Proof. Let (eq,...,e,41) be the standard basis of R"*!. Define f : R" — C€2+1 by
flei) = —ej-ey1 forall 1<i<mn,

and linear extension. For x = Y7 ; x;¢; € R"” we have

n 2 n
= _inei'en+l Z XiXj€i-Cpy1 - €j-Cpyl = Z XiXj€ij-€j-Cpy1-Cntl
i=1

ij=1 i,j=1
n n 2
= Z XiXjej - ej = (inq) =x-x=—qu(x)-1.
ij=1 i=1
By the universal property of Clifford algebras, f extends to an algebra homomorphism f Cly — ceo 1

Evaluating f on a vector space basis of C/,; shows that it is an isomorphism (see Exercise no. 6). Finally, the
isomorphism C/, =~ C/9 41 is the complexification of f. O

Theorem 1.30. Forall m € N there are algebra isomorphisms
Dy 1 Clyyy — M(2,2,C)@M(2,2,C)®...Q M(2,2;C) =~ M(2",2™;C),
Pomt1: Clopmir = (M(2,2,€)®...@M(2,2,C))® (M(2,2,0)®...® M(2,2;C)) =~ M(2",2";C) ® M(2",2";C),

given as follows. Let E := Ep, U := <(1) Bi)’ V= ((1) 6), W= ((1) Bl> For1 < j < mdefine

¢om - C 962]1'—>W®W® AWRURER...QE,
J-th slot

pom 1 CM" 36 > WOW®.. ®W®”}/l@t)E® .®E
J-th slo

and extend linearly. Then, o (x)? = —qS,(x) -1 for all x € C*" and by the universal property of Clifford algebras,
¢Pom extends to an algebra homomorphism $yy,, which turns out to be an isomorphism. To obtain Dy, 41, we define

domin  C L 56 (Pam(e;), Pam(ej)), 1<j<2m
"t T lW®...QW,—iW®...QW), j=2m+1,

and proceed analogously.

Definition 1.31. Let K = R, C and let A be a finite-dimensional, associative and unital K-algebra.

(i) A representation of A is a K-algebra homomorphism p : A — Endk (V), where V is a finite-dimensional IK-vector
space. In this situation, V is also called an A-module. If the representation p is fixed, we shall write x - v := p(x)(v).

(ii) Given two representations p : A — End(V) and x : A — End(W), their direct sum is the representation
p@x: A— End(VOW),given by p®x(x)(v+w) = p(x)(v) + x(x)(w).

(iii) A representation p : A — End(V) is called reducible if it is a direct sum p = p1 @ p2 : A — End(Vy @ V) with
Vi # {0}, i = 1,2. In other words, p is reducible if V splits into a nontrivial direct sum V = Vi @ V, such that
p(x)(V;) € Vjforall x e A, j=1,2. If p is not reducible, we call it irreducible .

(iv) Two representations p : A — End(V), x : A — End(W) are called equivalent or isomorphic if there exists a

K-vector space isomorphism F : V. — W such that p(x) = F Y ox(x) o F forall x € A.
(v) We define modules, direct sums, irreducibility and equivalence analogously for representations of Lie groups.

Remark 1.32. If p : A — End(V) is any representation of A, then p can be decomposed into a direct sum p =
01D ... D px of irreducible representations p; : A — End(V;). Indeed, we simply apply Definition 1.31(iii) recursively.
This process must end by finite-dimensionality of V.

For the next theorem, we need an important element in the Clifford algebras C¢,, respectively C¢,,.

Definition 1.33. Fix an orientation of R" and let (eq,. .., en) be an oriented orthonormal basis w.r.t. (-, )guu. Define
the volume element wy, € Cl,, by

Wpi=e€1-€2---€n,
and the complex volume element w$ € Cl,, by

(‘US = il.(n+l)/zjgl “ep ey = il.(n+])/2Jw

Here, | x| denotes the largest integer which is smaller or equal to x € R.
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Theorem 1.34. There exists, up to equivalence, exactly one irreducible representation Cly,, — End¢(V), where
dimc V' = 2™. There are, up to equivalence, exactly two irreducible representations p : Clyy,y1 — Endc(V),
where dimV = 2™. These can be distinguished by the action of the complex volume element wgm 41 Le., either
p(wgmﬂ) = +id or p(wgmﬂ) = —id.

Proof. By Theorem 1.30, Cfy,, is isomorphic to M(2",2™;C). It is a classical fact that the only irreducible
representation of M(2",2";C) is the standard one, given by matrix multiplication.

Again by Theorem 1.34, C{5,,1 is isomorphic to M(2™,2™,;C) @ M(2™,2™;C). The two different represen-
tations are given by the standard representation of the first, respectively second, factor on C2".

For the proof of p(w$,, +1) = Tid and that these are inequalivalent representations, see Exercise no.9. [

Proposition 1.35. Let &y, : Cly, — M(2™,2";C) =~ End(C?") be the irreducible representation given in Theo-
rem 1.30 and F : Cly,,—1 — C{3, the algebra isomorphism from Proposition 1.29. Then the representation Py, o F
Clyy—1 —> M(2™,2",C) ~ End(sz) is (equivalent to) the direct sum of the two irreducible representations of Clyy,—1.

Proof. See Exercise 10. U
1.3. The Spin group, its Lie algebra and representations.

Notation and Remarks 1.36. Denote by Cl}; the multiplicatively invertible elements of Cly. Then Cly is an open
subset of Cl,, and hence a smooth manifold. Multiplication and inversion on Cl;; are both smooth, hence Cl}; is a Lie

group.

Definition 1.37. (i) The Clifford group I',, of Cly, is the closed subgroup of CC}; given by

r,:= {xe Clyla(x)-v-xLeR" forallve ]R”} .
(ii) Define the continuous group homomorphism A, : I'y — Gl(n; R) by
An(x)(0) := a(x) - v-x" L.
(iii) The norm of Cl,, is the map
N:Clysxm—x-akx')=x-a(x)ect,.

Remark 1.38. (i) The maps a,-! : Cl, — Cly leave Ty, invariant. Indeed, if x € Ty, then a(x) - v - x~leR" for all
v € R" and by definition of x we have

w(a(x))-v-a(x) 7t = —a(a(x) - a(@) - a(x) " = —a(a(x)-v-x7) =a(x)-v-x"eR"

for all v e R" and analogously for -'.
(ii) Note that for x € R" we have N(x) = x - a(x!) = x - a(x) = —x - x = g, (x) = |x[?.

Lemma 1.39. The kernel of the group homomorphism Ay, : T'yy — Gl(n;R) is ker A, = R* - 1.

1

Proof. Let x € ker A;;. Then by definition a(x) - v-x~ = v for all v € R", which is equivalent to

a(x)-v=v-x forall veR".

We decompose x into its even and odd part, x = x¥ + x! with x’ € C#i,. Then the above statement is equivalent
to

(1.3) X v=0-2" and —xlv=v-x! forall veR".

0

Let (eq,...,en) be the standard basis of IR”. We express x" as a linear combination of the basis vectors from

Exercise 6 and write
X’ =a+eb,
where a € Cf9, b € Cf}, and neither a nor b contain a term with a factor e;. We apply the first relation in (1.3) to
v = e1 and obtain
(a+ e b)er = ei(a+erd).
Since a has even degree and contains no term with a factor ¢; we have ae; = eja. Analogously, we have
e1b = —beq. Hence,
a+eb=a—eb,
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which in turn implies e;b = 0 and x° contains to term with a factor e;. By applying the same argument to
e;, i =2,...,n, we conclude that x? is a linear combination of the elements from Exercise 6 no term of which
contains a factor ¢;, i.e., XeR-1.

Proceeding analogously with the second relation in (1.3) shows x! € R - 1. But since 1 € Cf3 we must have
x!=0.Hencex =x"c R-1nT, = R* 1. O

Lemma 1.40. If x € Iy, then N(x) € R* and the restriction Nr, : Iy — R* is a group homomorphism with
N(a(x)) = N(x) forall x e T'.

Proof. Let x € Ty,. Then a(x)-v-x~! € R" for all v € R". Since the transpose acts as the identity on R", we
get (x')"1.v-a(x)! = a(x)-v-x7'. Thus, v = x'-a(x)-v- (a(x)!-x)71 = a(x)' - x-v- (a(x)! - x)~! which
implies that a(x)" - x € kerA,. By Remark 1.38(i), y = a(x)! € T\, and by what we just showed a(y)! -y =
a(a(x))t - a(x)" = x - a(x)"! = N(x) € ker A,,. By the last lemma, N(x) € R* - 1.

To show that N restricted to I';, is a homomorphism, note that R - 1 is central in C¢,,. Hence, for x,y € T';;, we
have N(x-y) = x-y-a(x-y)' = x-y-a(y)’ - a(x) = xN(y)a(x)’ = x-a(x)'N(y) = N(x)N(y).

At last, we have N(a(x)) = a(x) - a(a(x))’ = a(x - a(x)!) = a(N(x)) = N(x). O

Proposition 1.41. We have
(i) RM\{0} = Ty,
(i) for x € R™\{0}, An(x) € Gl(1;R) is the reflection about the hyperplane x-. In particular, A,(T,) < O(n), the
orthogonal group.

Proof. Let x € R"\{0}. By Lemma 1.39, A,,(x) = A (||x| - 7%) = An(Hi—H), which is why we can assume w.l.o.g.

[E)
that x| = 1. Choose an orthonormal basis (e; = x,ep,...,¢e,) of R”. Then, for v = > ; a;e; we have by the
Clifford relations

n n n
An(x)(0) = An(er) <Z ﬂi€i> = Ylaia(er) e-e; = = > aer-e;e
i=1 i=1 i=1
n n
= —aje1 — Z aeq - e; -el_1 = —aie1 + 2 a;e; e R".
i=2 i=2
In particular, A, (x) is the reflection about x and | A, (x)(v)| = [v]. U

Definition 1.42. The Pin group Pin(n) < Cl}; is the kernel of N : 'y, — IR*. The Spin group Spin(n) is the group
Pin(n) n CA.

Theorem 1.43. (i) The Pin and Spin groups are Lie groups explicitely given by
Pin(n) = {vy-v3-- v |v; € RY, |u;| =1,0 <i<kkeNp},
Spin(n) = {or - v vz o € R”, oy = 1,0 < i < k,k & No}.

(i) An|pin(n) : Pin(n) — O(n) is a surjective Lie group homomorphism with kernel {£1}.

(iii) (An|pin(n)) ™" (SO()) = Spin(n).
(iv) Spin(n) is connected for n = 2.

Proof. Recall that any orthogonal map A € O(#) can be written as the concatenation Ay, o. ..o Ay, of reflections
Ay, about hyperplanes v, where v; € R" with |v;| = 1. By Proposition 1.41 and the definition of Pin(n),
v1---v € Pin(n) and Ay (v1---v) = Au(v1) - Au(vx) = Ay ©...0 Ay, = A. Furthermore, the kernel of
An|pin(n) i ker Ay nkerN = {x € R*-1|N(x) = 1} = {x1}, which also shows the explicit expression for
Pin(n).

Recall also that the group SO(n) < O(n) can be characterized as the group of maps which can be written as
the concatenation of an even number of reflections. This shows (iii) and the explicit expression for Spin(#n).

To see that Pin(n) is a Lie group, recall that I, is a closed subgroup of the Lie group C/;;. It is a theorem (see,
e.g., Lee, J. M. Introduction to smooth manifolds) that any algebraic subgroup of a Lie group which is topologi-
cally closed is automatically a Lie group in its own right. This makes I, into a Lie group and N : T, —» R* a
Lie group homomorphism. Now Pin(n) is the kernel of N, which makes it a topologically closed algebraic sub-
group and therefore a Lie group. Similarly, Spin(n) is the inverse image of the Lie group SO(n) and therefore,
again, a topologically closed algebraic subgroup, hence a Lie group. The map Ay pjy(y,) is the concatenation
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of multiplication, inversion and the (restriction of the) linear map «, hence smooth and therefore a Lie group
homomorphism.
In light of (iii), it suffices to connect —1 to 1 with an arc in Spin(#n) to see (iv). Such an arc is

¢: [0, 7] 3t cos(t) + sin(t)e; - e = (sin 5eq — cos Sep)(sin 5eq + cos Se;) € Spin(n).

Remark 1.44. We will henceforth only be interested in the Spin group and will from now on view A, as a map
A= Ay : Spin(n) — SO(n)
g—(@—a(g) v gl =gvg).

For the next proposition, recall that the Lie group C/}; is an open subset of C¢,,. Hence, T1Cl;; = Cl;,. Since
Spin(n) is a submanifold of C¢}, T; Spin(n) is a subspace of Cly,.

Proposition 1.45. The tanget space to Spin(n) at 1 is
Ty Spin(n) = spang{e;-¢;j |1 <i<j<n} < Cly.
Proof. For1 <

i < j<mn,consider the curve
v¥:R >

t — cos(t) + sin(t)e; - ej = (sin Se; — cos %e;)(sin se; + cos Se;) € Spin(n) < Cl, .
We have y(0) = 1 and %| i—oY(t) = ei-e;. This shows 2" By Exercise 6, the stated subset of Cl, clearly
has dimension %n(n —1). But from Theorem 1.43, we already know that dim T; Spin(n) = dim Spin(n) =
dim SO(n) = %n(n —1), showing "<”. 0
Corollary 1.46. The Lie algebra of Spin(n) is

spin(n) =~ spang{e;-¢j |1 <i<j<n}cCly
with the Lie bracket [x,y] = x-y—y - x.

Proof. Following Example 1.14, one checks that the Lie algebra of C/}; is C¢, equipped with the Lie bracket
[x,y] = x -y —y - x. The Lie algebra of Spin(n) then inherits this Lie bracket. g

Proposition 1.47. The differential Ay = dA, : Ty Spin(n) = spin(n) — so(n) = Tg, SO(n) is an isomorphism
explicitely given by
As(ei-ej) = ZXei,gj ,
where Xei,e]. are the matrices from Exercise 5.
Proof. Since A : Spin(n) — SO(n) is a surjective Lie group homomorphism between Lie groups of equal

dimension, its differential at 1 must be an isomorphism. We consider again for 1 < i < j < n the path
7 : R >t cos(t) +sin(t)e; - ¢j € Spin(n). Note that ()~ = y(—t). Hence, for v = >}_; vrex € R" we have

d d _
Mg = g MO =g 100907
d
= a‘tzo'y(t)-v-’y(—t) =e € V—0-¢- €
=Ui<€i-€]‘-€,'—€i-€i-6]‘)+?}j(6i~6]'-€j—€]‘-€,‘-€]'>+ Z Uk(€i~€]'-€k—6k-€i-€]')
k£i,j

= 2v;e; — 2vje; = 2(vjej — vje;) = ZXEi,gjv.

Definition 1.48. The (complex) fundamental spin representation of Spin(n) is the Lie group homomorphism

Ky : Spin(n) — GL(Z,)

given by restricting an irreducible complex representation Cl,, — End(%,) to Spin(n) < C{9 < Cl,. We call =, the
spinor module and an element s € L, a spinor .



12 SEBASTIAN BOLDT

Proposition 1.49. When n is odd the definition of the complex spin representation is independent of which irreducible
representation of Cl,, was used. In particular, it is well-defined. Moreover, when n is odd, x, is irreducible.
When n is even, there is a decomposition

Kn =K DK, , KE - Spin(n) — GI(ZF)

into irreducible representations k called the positive respectively negative half-spin representations . Accordingly, the

modules TF are the positive respectively negative half-spinor modules .

Proof. Letn = 2m + 1. Recall from Theorem 1.34 that C/5,, 1 has two irreducible representations p; : Clpy, 11 —
Gl(V), i = 1,2, which can be distinguished by pl(wgm 4+1) = +id and pz(wgm 4+1) = —id. Since & is an alge-
bra automorphism of Cly,,11, p2 © & is also a representation of Cly,, 1 with pp o uc(afzcm 1) = pz(—wgm ) =

—pz(wgm +1) = +id, so p1 and p; o a are equivalent. Now recall that ce. 41 is the (+1)-eigenspace of a, hence

0
2m+1-

By Proposition 1.29 there is an algebra isomorphism F : Clp, — C(3 +1- Since p; o F : Clpy — GI(V)
is a nontrivial complex representation of Cl;,, of dimension 2", it must be the unique irreducible one, hence

_ . . . . . 0
p=Picg,  Iisan irreducible representation of C/;, . ;.

To see that p|gpin(2m+1) is an irreducible Lie group representation, assume that p|gpin(2m+1) Splits into the
direct sum of two nontrivial representations, i.e., there exists a nontrivial splitting V. = W; @ W, such that
p(x)(W;) € W, for all x € Spin(2m + 1). By Exercise 6 and Theorem 1.43(i), Spin(2m + 1) contains an additive
basis ¢; - e, --e;,, 1 <1 <ip < ... <iy < 2m+1of CEgmH. Since p is the restriction to Spin(2m + 1)
of an irreducible representation of CEQZ, not all of these basis elements leave W; invariant, i.e., there exists
1<ip <ip<...<iy <2m+1landje {1,2} such that p(e; -e;, - e;,,)(W;) & W;. A contradiction. Hence,
PSpin(2m+1) is an irreducible representation of Spin(2m + 1).

Now let n = 2m. There is exactly one irreducible representation p : Clp,, — GI(V) of Cly,. If we restrict
p to C¢Y , then Proposition 1.35 tells us that Pice splits into the direct sum of two inequivalent irreducible

01 and p; are equivalent when restricted to C/

2m’
representations. We argue as in the case n = 2m + 1 that their restrictions to Spin(2m) < C¢9,  are irreducible
Lie group representations. 0

Remark 1.50. The fundamental spin representation is not induced by a representation of SO(n) (through A). Indeed,
—1 € Spin(n) and x,(—1) = —idx,, while for every representation p : SO(n) — GI(V') we have p o A(—1) = p(E;) =
idy.

Proposition 1.51. Let p : Cl;, — GI(V) be an irreducible representation of the complex Clifford algebra Cly. Then
there exists an inner product -, -) on V such that

(1.4) (p(x)(v), p(x)(w)) = (v, w) forall xeR" < Cl, with |x|=1 andall v,weV.

In particular,

(i) multiplication by unit vectors is skew-symmetric , i.e., for all x € R™ with ||x| = 1 and all v,w € V we have

{p(x)(0),w) = {p(x)*(v), p(x)(w)) = (p(x*)(v), p(x)(w)) = —(, p(x)(w)),
(ii) there exists a Spin(n)-invariant inner product (-,-) on L, , i.e., {5, (g)(0), k,(g)(T)) = {0, T) for all g € Spin(n)
and 0, T € Xy. In short: x; : Spin(n) — U(Z,).

Proof. Since p is an irreducible representation, there exists a linear isomorphism F : V — C2” such that p(:) =
Flo®,(-)oFincasen =2morp(-) = F 1 omo®,(:) o Fif n = 2m + 1, where ®,, is the algebra isomorphism
from Theorem 1.30 and 71;, i = 1,2, the projection on the first respectively second factor.
We define the inner product ¢-,-) on V to be the pullback (v, w) := (F(v), F(w)) of the standard hermitian
inner product
zn/Z

(a,b) = > aib;
i=1

on C2”. Then (1.4) follows from the matrices U, V and W from Theorem 1.30 being unitary. O
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Definition 1.52. (i) A Clifford multiplication is a complex linear map
H:R'"®%, - X,
X®0—x-0:=ux®0)

which satisfies
x-(y-o)+y-(x-0)=-2x,yy-c  forall x,yeR",ceZ,.
(ii) Two Clifford multiplications p1,uy : R* @ X, — X, are equivalent if there exists a vector space isomorphism
F: %, — X, such that

(x®0c) = F Y (u(x @ F(0))) forall xeR",ceX,.

Proposition 1.53. If n is even then there exists up to equivalence exactly one Clifford multiplication. If n is odd
there exist up to equivalence exactly two Clifford multiplications one of which is the negative of the other. They can be
distinguished by the action of the complex volume element w$, i.e., they satisfy

WS o= il"TV e ey (L (e 0)) = +0 forall ceX,.

Proof. Ifp : C¢,;, — End(Z,) is anirreducible representation then y(x® ) := p(x)(c) is a Clifford multiplication.
This shows existence and in case 7 is odd that there are two Clifford multiplications which can be distinguished
by the action of the complex volume element.

To see uniqueness, let i1 : R" ® X,, — X, be a Clifford multiplication. Define p : R” — End(Z;) by p(x)(0) :=

#(x®0). Then p(x)? = —|x|?-idy,. Hence, p extends uniquely to an algebra homomorphism g : C/,; —
End(Z,) and by complexification to an algebra homomorphism g : C/, — End(Z,). Since dimX, = 2"?, p
must be an irreducible representation. This completes the proof. O

Corollary 1.54. Every Clifford multiplication satisfies
(i) {x-o,x-T) ={0,Tyand
(i) {x-0,7) = {0, x-T)
forall x e R" with ||x| = 1 and all 0, T € £, where {-,-) is the Spin(n)-invariant inner product on X,,.

Remark 1.55. The group Spin(n) acts on ., by the fundamental spin representation x,, : Spin(n) — U(Z,) and on R"
by A : Spin(n) — O(n). If we form the tensor product R" ® ¥, then Spin(n) acts thereon via the tensor representation

A®1ky, : Spin(n) - U(R" ®%,)
§ = (x®0 — A(g)(x) ®Ku(8)(7))-

Proposition 1.56. Every Clifford multiplication p : R" ® ¥, — X, is Spin(n)-equivariant , i.e., we have

HARKy(§)(x®0)) = kn(Q)(H(x® 7)) forall geSpin(n),xeR",ceX,.
Put differently, the diagram

R"®Z%, L> Zn
i)\@?{n ixn
R"®XZ, L‘ Xy
is commutative.
Remark. The following proof actually shows: If we choose one representative y from the given equivalence class of

Clifford multiplications, then there exists precisely one representative «, of the equivalence class of the fundamental spin
representation such that y is Spin(n)-equivariant w.r.t. A ® «,, and xy,.

Proof. The Clifford multiplication p satisfies u(x ® o) = p(x)(c) where p : C{;, — End(Z,) is an irreducible
representation. We also have k = p|gpin(,,)- The claim is now a straightforward calculation:

HA®K(8)(x®0)) = u(M(g)(x) ®Kn(8)(0) = u(g - x- g  ®p(8)(0))

=p(g-x-g N(p(g)(0) =p(g-x-g-8)(0) = p(g-x)(0) = p(g) o p(x)(v)
=xn(g)(H(x®0)).
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Remark 1.57. Since there is no ambiguity about how Spin(n) acts on X, (via k) respectively R" (via A), we can
abbreviate notation and simply write go respectively gx for all ¢ € Spin(n), x € R" and 0 € Z,,.
The equivariance of Clifford multiplication can now be stated very concisely:

gx-g0 =g(x-0) forall geSpin(n),xeR",ceX,.
In fact, using this shorthand notation, the proof of Proposition 1.56 becomes very short:
gx-gr=g-x-¢gl.go=g-x-0=g(x-0).
Note, however, that it is not easy to unravel what exactly is happening here.
2. INTERMEZZO: GAUGE THEORY

Definition 2.1. Let P be a smooth manifold and G a Lie group.
(i) A (right-)action of G on P is a smooth map

PxGa(pg)—p-geP
such that
e p-e=pforallpe Pand
e (p-g)-h=p-(g-h)forallg,he Gand p € P.
For g € G themap Rg : P € p — p- g € P is called right-translation by g . Ry is a diffeomorphism with inverse
Rg_l = Rgfl.
(ii) A right action of G on P is
o free ifp-g =g forpe Pand g € Gimplies g = e, i.e., the only right translation that has fixed points is R.,
o transitive if for all p,q € P there existsa g € G such that p- g = q,
o simply-transitive if it is free and transitive, i.e., if for all p,q € P there exists precisely one § € G such that
p-&8=4q
Example 2.2. Let V be a real n-dimensional vector space and let P := {v = (vy,...,v,) € V" |vis a basis of V}. Then
P is a smooth manifold of dimension n?. The group G = Gl(n; R) acts on P from the right by

n n
PxGs(vA)—v- A= (ZAirlvi,...,ZAi,nv,) eP.
i=1 i=1

Indeed, we have v - E, = v forallv e Pand ifve P, A, B € Gl(n;R) then

n

n n n n n
(TJ : A) -B = (Z Ai,lvi/ ey Z Ai,nvi> -B = (Z Bj,1 Z Ai,jvi/ veey Z B]',n Z Ai,]'vi>
i=1 j=1 j=1 i=1

i=1 i=1

ij=1 ij=1

n n
= ( Z Ai,]-Bjrlvl-, ey Z Ai,ij,nvi) =0- (A . B) .

The action is smooth since it is a polynomial in the entries of its arquments. Moreover, it is easy to see that the action is
simply-transitive.

Definition 2.3. Let G be a Lie group and M a smooth manifold.
(i) A G-principal fibre bundle over M is a triple (P, 7tp; G) consisting of a manifold P, a smooth map rip : P — M
and a right-action of G on P such that
(a) 7Tp is surjective,
(b) the action of G on P is free,
(c) p(p) = rtp(q) if and only if there exists g € G such that p- g = q,
(d) for every x € M there exists an open neighborhood U = M containing x and a section of P on U , i.e., a smooth
map sy : U — P such that 7ty o sy = idy.
(it) Let (P, 7tp;G) and (Q, mg; G) be G-principal fibre bundles over M. A smooth map ® : P — Q is called
G-principal fibre bundle morphism if
(a) mgo® = mpand
(b) @ is (G-)equivariant , i.e., we have D(p - g) = P(p)-gforallpe Pand g € G.
(iii) The G-principal fibre bundles P and Q are isomorphic , denoted P =~ Q, if there exists a
G-principal fibre bundle isomorphism , i.e., a bijective G-principal fibre bundle morphism ® : P — Q.
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Remark 2.4. (i) By Definition 2.3(i)(b) and (c) G acts simply-transitively on every fibre Py := 7'[1?1 (x) of P over M.
(ii) If there is no danger of confusion we will refer to the total space P of a G-principal fibre bundle (P, 7tp; G) as the
principal fibre bundle.

Example 2.5. Let M be a smooth manifold and G a Lie group. Define the manifold P :== M x G with 7p : P 3 (x, p) —
x € M and the G-action on P by multiplication of G from the right on the second factor. Then (P, 7tp; G) is a G-principal
fibre bundle called the trivial G-principal fibre bundle over M .

Proposition 2.6. Let (P, tp; G) be a G-principal fibre bundle over M. Then (P, rtp; G) is isomorphic to the trivial
principal fibre bundle over M if and only if there exists a global section of P, i.e., a smooth map s : M — P such that
TTpOoS = idM.

Proof. Let Q be the trivial G-principal fibre bundle over M. We can always define a global section over Q by
tM—->Q=MxG
x— (x,e).

If ® : Q — Pis a G-principal fibre bundle isomorphism then s := ® o t is a global section of P.
Now suppose that P admits a global section s : M — P. Define a map

P:Q=MxG—-P
(x,8) = s(x) 8.
Then @ is a G-principal fibre bundle isomorphism. |
Remark 2.7. Not every G-principal fibre bundle P over M is isomorphic to the trivial principal fibre bundle. However,
every such P is locally isomorphic to M x G in the following sense. For every x € M there exists an open neighborhood

U < M of x such that n;l(ll) ~ U x G. Indeed, if x € M then by Definition 2.3(i)(d) there exists such a U and a
section sy : U — P. The map

®:UxG— mp'(U)
(x,8) —su(x)-g

is a G-principal fibre bundle isomorphism between U x G and 7t ' (U).

Example 2.8. Let M be a smooth n-dimensional manifold. For x € M define
GI(M)y :={vx = (v1,...,04) | Ux is a basis of Ty M}
and let
GI(M) := | J GI(M)y.
xeM

Define the projection via

T = nGl(M) . GI(M) — M

Oy — X

Note that if (U, = (x!,...,x™)) is a coordinate chart of M, then for every x € U the associated frame sy(x) :=

(01(x),...,0n(x)) € GI(M)y. The set GI(M) has a unique structure as a smooth manifold if one requires that all such
coordinate frames are smooth. This then turns 7tgy () : GL(M) — M into a smooth map.

There is a G = Gl(n; R)-right-action of Gl(n;R) on Gl(M)y as defined in Example 2.2. This action induces a
right-action of Gl(n; R) on G1(M):

GI(M) x Gl(m;R) — GI(M)

n n
(2.1) (vx = (v1,...,0n),A) > Uy - A= (Z Ai,lvi,...,Z Ai,nv,') .
i=1 i=1

The principal fibre bundle (GL(M), 7tg)(ar); GL(11;R)) is called the frame bundle of M .

Every additional structure on the manifold M defines a subbundle of G1(M).

Example 2.9. Let M again be a smooth n-dimensional manifold.
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(i) Assume that M is oriented. Let G = GIT (n;R) = {A € Gl(n;R) | det A > 0} and define
GIT (M) := {vy € GI(M)y | vy is a positively oriented basis of TyM, x € M} .

We define a G1* (n; R) right-action on GI™ (M) as the restriction of the Gl(n; R)-action on GI(M). With TG+ (M) =
TGIM) | GI*+ (M)’ the tuple (G1T (M), 7TGI+(M);G1+(11; R)) is then a GIT (n; R)-principal fibre bundle called the
bundle of positively oriented frames .

(ii) Let g be a Riemannian metric on M. Define

O(M) :=0O(M, g) := {vx € GI(M)y | vy is an orthonormal basis of (TxyM, gx)} .

Analogously to before, we let 7oy O(M) 3 vx — x € M and define an O(n)-right-action on O(M) by
restricting the Gl(n; R)-action on GL(M). Then the O(n)-principal fibre bundle (O(M), 7to(p1); O(n)) is called the
bundle of orthonormal frames of M .

(ii)) Combining the previous two examples leads wus to the SO(n)-principal fibre bundle of

positively oriented orthonormal frames of M . That is, assume M is oriented and let ¢ be a Riemannian metric
on M. Define

SO(M) :=SO(M, g) := {vx € GI(M)y | vy is a positively oriented orthonormal basis of (TxM, gx)}

and mtgoary * SO(M) 5 vy — x € M. Formula (2.1) defines an SO(n)-right-action on SO(M) turning
(SO(M), 7tso(m); SO(n)) into a principal fibre bundle.

A generalization of the notion of G-principal fibre bundle morphism is the following.

Definition 2.10. Let (P, tp; G) be a G-principal fibre bundle over M and f : H — G a Lie group homomorphism.
An f-reduction of P is a pair (Q, ®) consisting of an H-principal fibre bundle (Q, 7tq; H) over M and a smooth map
® : Q — P such that

(i) mpo® = g and

(ii) ©(q-h) = D(q)- f(h) forallge Q, he H.
Properties (i) and (ii) can be summarized by saying that the diagram

QxH-——>Q

l(bx f i@\nQ
PxG——P—"F>
is commutative.
If we are in the situation that H < G is a Lie subgroup and f = 1 : H — G is the inclusion, then we also call any

f-reduction (Q, f) an H-reduction of P or a reduction of P to H .

Example 2.11. Any of the principal fibre bundles from Example 2.9 together with the inclusion 1 : H — Gl(n;R),
H = GI* (n;R),0(n),SO(n), is an H-reduction of the frame bundle G1(M).

Definition 2.12. Let K = R or K = C and M a smooth manifold.
(i) A K-vector bundle of rank k < oo over M is a triple (E, 7wg; V) consisting of a smooth manifold E, a smooth map
nig : E — M and a k-dimensional KK-vector space V such that
(a) mtg is surjective,
(b) Ey:= mg(x)~ 1 is K-linearly isomorphic to V for all x € M and
(c) forall x € M there exists an open neighborhood U = M of x and k pointwise linearly independent local sections of E over U
, i.e., there exist k smooth maps s1, ..., sy : U — E such that
(1) mgosj=idy forallj=1,... kand
(2) (51(y),---,5k(y)) is a basis of Ey for all y € U.
In case K = R we call E a real vector bundle and in case K = C a complex vector bundle .
(ii) We denote the space of local sections of E over an open set U =< M by I'(U, E), i.e.,

I'(U,E) = {s: U — E|sissmoothand mg os = idy} .

In the particular case U = M we call the elements of I'(U, E) just sections of E or sometimes global sections of E .

(iii) For sections s1,...,sx : U — E as in (i)(c) we call the smooth map s = (s1,...,5¢) : U — Efa (Iocal) frame for E.
In case U = M, we call s a global frame for E .
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(iv) Let E, F be two K-vector bundles over M. A smooth map ® : E — F is a vector bundle homomorphism if
(a) mpo® = g and
(b) @, : Ex — Fy is K-linear for all x € M.
We call ® a vector bundle isomorphism if it is invertible and then we call E and F isomorphic .

Example 2.13. Let M be a smooth manifold.

(i) Let V be a k-dimensional K-vector space. Define E := M x Vand ng : E = M xV 3 (x,v) — x € M. If we
define
(x,v) + (x,w) == (x, v+ w),
A-(x,0) = (x,A-0)
forall x € M, v,w € Vand A € K, then (E,g; V) is a rank k vector bundle over M. We call E the
trivial vector bundle with fibre V over M , or simply trivial .
The sections T'(M, E) are smooth maps s : M — E = M x V satisfying g o s(x) = x, hence they are of the
form s(x) = (x,v(x)) for somev e C*(M,V).

(ii) The tanget bundle TM of M is a real vector bundles of rank k = dim M over M. The sections I'(M, TM) of TM
are precisely the smooth vector fields V(M).

Remark 2.14. Note that the space of sections I'(M, E) of the K-vector bundle E over M is a modul over the ring
C*(M;K) of smooth K-valued functions on M. Here, the sum of two sections and the product of a smooth function
and a section of E are defined pointwise, i.e., for f € C*°(M,K) and s,t € T (M, E) the sections s + t, fs € T(M, E) are
defined by

(s+t)(x) :=s(x) +t(x) € Ey,

(fs)(x) := f(x)s(x) € Ex

forall x e M.

In linear algebra we learn how to construct new vector spaces out of given ones, e.g., the dual vector space,

the direct sum or tensor product of two vector spaces. These constructions carry directly over to vector bun-
dles.

Definition 2.15. (i) Let (E, wg; V) and (F, ip; W) be two K-vector bundles of rank k and I, respectively, over M.
The Whitney-Sum of E and F is the KK-vector bundle (E® F, mggyr; V @ W), where

E@F := U Ex®Fs
xeM

and
TTEQF - E@FS (ex/fx) —xeM.
Ifx e Mand U,V < M are neighborhoods of x such that there are local frames s = (s, ...,s) : U — EX and
t=(,...,1): V> F!, then the k + | maps
ST W+ -/ Sk|W W-—->ECE®F, t1|W/-~/tl|W :W—->FCE®F

where W := U NV, are a pointwise linearly independent. The requirement that all these collections of maps are
smooth equips E @ F with a topology and a smooth structure, which then turns mggr into a smooth map.

(ii) Asabove, let (E, rtg; V') and (F, tp; W) be two K-vector bundles of rank k and 1, respectively, over M. We consider
the set

EQF := U Ex ®k Fx
xeM
with the projection

nE®p:E®F92ei®fiﬁxeM.
T
For local frames s of E and t of F as above, thekolma]ps
ujj:W—>EQF i=1,...kandj=1,...,1
with
uij(y) =si(y) ®@t(y) forall yeWw,
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are pointwise linearly independent. The requirement that all such maps constructed out of local frames of E and F are
smooth turns E ® F into a smooth manifold and rtggr into a smooth map. The vector bundle (EQ F, mggr; VO W)
is called the tensor product of E and F .

(iii) Let (E, tg; V) be a K-vector bundle. We consider the set

E*:= | ) E

xeM

and the projection
gzt E* say > xe M.
Ifs = (sq,...,s¢) : U— EFisalocal frame of E, then we define the dual frame ¢ = (¢1,..., @) : U — (E*)K by
requiring that
(p1(x), -, pi(x))

is the basis of EY dual to the basis (s1(x), . ..,sx(x)) of Ex, for all x € U. That is, ¢;(x)(sj(x)) = d;; forall x € U.
The requirement that all such dual frames are smooth turns E* into a smooth manifold and rtp« into a smooth map.
The vector bundle (E*, tgs; V*) is the dual vector bundle of E .

(iv) Let (E, 7tg; V) be a complex vector bundle over M and let V be the complex conjugate vector space. That is, V is the
abelian group V together with the scalar multiplication C x V 3 (z,v) — z-v € V. We consider the set

E= |JE

xeM

with projection
ng:Esex—>xe M.

Any local frame s = (sq,...,s;) : U — EF defines a a local frame s : U — . Thus, E directly inherits the
topology and smooth structure from E. The vector bundle (E, 7tg; V) is the complex conjugate vector bundle of E .

In case (E, 7tg; V) is a real vector bundle we define (E, wg; V) := (E, tg; V).
(v) There exist many more constructions like Hom(E, F), A'E, ...

Remark 2.16. (i) In case of the tangent bundle T M of a smooth manifold M, the dual bundle TM*, called cotangent bundle,
is denoted T* M. Note also that in case of the tangent and cotangent bundle we denote the individual fibres by TxM
and T M instead of T My and T* My, respectively.

(ii) Note that the above operations ®,®, ™, .. . induce associated operations on the corresponding sections. For example,

ifse'(M,E)andt e T(M,F), then s®t € I'(M, E® F) is the section defined by (s ® t)(x) := s(x) ® t(x).

Example 2.17. We consider the real vector bundle T* M ® T* M. An element b € (T*MQ T*M)y = TIMQ T M

(x € M) can be thought of as a bilinear form, i.e., given v, w € Ty M we have b(v, w) € R. As usual, we call b symmetric

if b(v,w) = b(w, v) for all v, w € T,y M and positive definite if b(v,v) > 0 for all v € T,M\{0}. A Riemannian metric g

on M is nothing but an element of T (M, T* M ® T* M) that is pointwise symmetric and positive definite. In other words,

g is a pointwise inner product depending smoothly on the basepoint.

More generally than the example of a Riemannian metric, we have the notion of a bundle metric.

Definition 2.18. Let (E, tg; V') be a real or complex vector bundle over M. A bundle metric on E is a section {:,-) €
T(E*®E") which is pointwise an inner product, that is, pointwise symmetric and positive definite (K = R) respectively
hermitian and positive definite (K = C).

Remark 2.19. Just as for Riemannian metrics, a simple argument using a partition of unity shows that any vector
bundle carries a bundle metric.

So far, we have introduced two different types of fibre bundles, namely principal fibre bundles and vector
bundles. The next definition connects these two seamingly different worlds.

Definition 2.20. Let M be a smooth manifold, (P, rtp; G) a G-principal fibre bundle over M and p : G — GI(V) a real
resp. complex representation of G on V. Define the set

E:=PxpV:i=Px,Vi=GxV/~
where the equivalence relation ~ is given by

(P.0) ~ (p-8,p(g ")) forallgeG,
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the projection 7tg : E 3 [p,v] — 7tp(p) € M, and on each fibre Ex = Px x (g ) V the vector space structure
ulp, vl +v[p,w] = [p,yv+vw| forall peP,v,weV,uvekK.

We equip E with a topology and smooth structure by requiring that if s : U — P is a local section of Pand v e C*(U, V),
then U 3 x — [s(x),v(x)] € E is smooth. The real (V real) resp. complex (V complex) vector bundle (E, 7tg; V) is the
vector bundle associated with P and p .

Remark 2.21. With respect to the construction in the last definition, the operations ®, ®,*, Hom, . .. on vector bundles
correspond exactly to the operations denoted by the same symbols on representations.

Example 2.22. Let M be a smooth manifold, G1(M) the frame bundle of M and p : Gl(n; R) — GI(IR") the standard
representation. Then

@ :GI(M) x, R" - TM
n
[(s1,--.,8n), (x1,--.,%n)"] — Z X;S;
i=1

is a vector bundle isomorphism. If p* : Gl(n;R) — GI((R™)*) is the representation dual to p, ie., p*(g)(I)(x) =
I(p(g~N)x) forall 1 € (R™")* and x € R", then

¥ 1 GI(M) % px (R")* — TM
n
[(Slr .. '/Sn)/ (yl/ .. -/yn)] = Z yio'ir
i=1

where (01, ..., 0y) is the basis dual to (s1, . .., sn), is a vector bundle isomorphism.

Proposition 2.23. Let M be a smooth manifold, (P, tp; G) a G-principal fibre bundle over M and p : G — Gl(V) a
representation. If there exists a G-invariant inner product {-,-) on V then on the vector bundle E = P x, V associated
with P and p there exists a bundle metric given by

e frE, = (v,w),
where e = [p,v] and f = [p, w] for some p € Py.

Proof. We have to show that the bundle metric is well-defined, i.e., independent of the chosen representatives.
Let g € Py and let ¢ € G be the unique element such that g = p-g. Then we have by definition e = [p,v] =

[p-80(g7 ()] = [9,0(g7")(v)] and f = [p,w] = [p- 8, p(§7")(w)] = [q,p(¢~")(w)]. Since the inner product
on V is G-invariant, we have (v, w) = {p(¢~!)(v), p(¢~")(w)). Hence, the bundle metric is well-defined. O

Definition 2.24. Let (E, tg; V') be a K-vector bundle over M.
(i) A linear map
V:T(M,E) > T(T*M®E)
is called covariant derivative on E if
V(fs)=df®s+f-Vs forall feC®M,K),sel(ME).
Ifse T'(M, E)and X € V(M), then the section Vxs := Vs(X) € I'(E) is called covariant derivative of s in direction X.

(ii) If E comes with a bundle metric, a covariant derivative V in E is called metric if
X{s, ty) = <VXs, f> +{s, Vxt)
forall X € V(M),s,t € I'(M, E). Here, (s, ty € C*(M) is the function (s, t)(x) := {s(x), t(x))E,.

Example 2.25. The Levi-Civita connection of a Riemannian manifold (M, (-,-) = g) is the unique covariant derivative
VEC on E = TM given by the Koszul formula

1
(VXY Z) = 5 (XXX, Z) + YCZ,Y) = 200, X) + (X, Y], 2) + 412, X1, Yy = (IY, 21, X))
The Levi-Civita connection is metric and, moreover, torsionfree, i.e., T(X,Y) := VxY — VyX — [X,Y] = 0.

Note that the torsion tensor T can in general only be defined on the tangent bundle and not on an arbitrary vector
bundle E.
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3. SPIN GEOMETRY

Definition 3.1. Let (M, g) be an oriented Riemannian manifold.

(i) A Spin-structure on M is a pair (P, 1t) consisting of a Spin(n)-principal fibre bundle (P, rtp; Spin(n)) over M
and a smooth map 7t : P — SO(M, g) such that
(a) Ttso(my© T = 7Tp and
(b) n(p-g) = nt(p)-Ag) forall p € Pand g € Spin(n) with A : Spin(n) — SO(n) the Lie group homomorphism

from Section 1.3.

In other words, a Spin-structure on M is a A-reduction of the bundle SO(M) of oriented orthonormal frames of M.
We can summarize properties (a) and (b) by saying that the diagram

P x Spin(n) —— P
J/nx)\ ln&
. 7SO (n)
SO(M, g) x SO(n) —= SO(M) —~> M
is commutative.
(ii) Two Spin-structures (Py, 1) and (P, 7tp) on M are called equivalent if there exists a Spin(n)-principal fibre

bundle isomorphism ® : Py — P, such that 71 = mp 0 ®.
(iii) If there exists a Spin-structure on a Riemannian manifold (M, g), we call M spin .

Remark 3.2. Note that two equivalent Spin-structures (Py, 1) and (P, 79) on M provide isomorphic Spin(n)-
principal fibre bundles Py and P,. However, the converse is not true. There do exist oriented Riemannian manifolds
(M, g) having two inequivalent Spin-structures (Py, 1t1) and (P, 7p) such that Py and P, are isomorphic as abstract
Spin(n)-principal fibre bundles over M.

Example 3.3. Let M = R". By identifying T,IR" with R" for each x € R", we can equip R" with the Riemannian
metric g given by the Euclidean inner product,

ex(v,w) :={v,wy forall xeR",v,we T,R"=R",

and its standard orientation given by requiring that the canonical basis (ey, ..., en) of TxR" = R" is positively oriented.
The bundle SO(R", g) of oriented orthonormal frames is trivial, i.e., is given by

SO(R",g) = R" x SO(n),

where we have identified an OONB (v4, ..., v,) of R"™ with the matrix A € SO(n) whose i-th column is v;. A Spin-
structure for (R", g) is now given by (P, 7t) with

P =TR" x Spin(n)

and
7r: P =R"xSpin(n) - R" x SO(n) = SO(R", g)

(x,8) = (x,A(g)) -

Example 3.4. We consider the unit sphere S™ < R™+1 with its round standard metric g, i.e.,
(v, w) :={(v,w)y forall xeS",v,weTS" < T,R*1 = R,
where (-, - is the Euclidean inner product. By our identification T,R"*1 = R"*1, x € R"*!, we have
T,S" = x+ = {v e R"" |{v,x) = 0}.

The orientation we endow S™ with is defined by requiring any basis (v1,...,v,) of TxS™ to be oriented if and only if
(01, ...,0n,x) is an oriented basis of R"*1. It follows that for any positively oriented orthonormal basis (vy, . ..,v,) of
TxS", (v1,...,vn, X) is an oriented orthonormal basis of R"*L. Thus, the bundle SO(S") is given by

SO(S") =S0(n+1),
where we have identified the OONB (vy,...,vy, X) of R+ with the matrix A in SO(n + 1) having vq,...,0,,x as
columns, with projection
nso(sn) : SO(Sn) = SO(Tl + 1) — Sn

(v1,-.-, 00, X)) =A—>x=A-¢,,1.
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The right-action of SO(n) on SO(S") = SO(n + 1) is given by the right-multiplication of SO(n + 1) on itself precom-
posed with the inclusion

1:50(n) - SO(n+1)

A 0
A'—><0 1).

Associated with the inclusion 1 is an inclusion T : Spin(n) — Spin(n + 1), which can be constructed as follows. The
inclusion R" =~ R" x {0} — R"*! induces an inclusion Cl, — Cl, 11 (the image of which is the algebra generated by
e1,...,en), which, by restriction, induces an inclusion T : Spin(n) — Spin(n + 1). It follows from the construction of
the map A from Section 1.3 that Ay 11 (1(g)) = t(An(g)) for all g € Spin(n).

To construct our Spin-structure for S™ we set P := Spin(n + 1). The right-action of Spin(n) on P is given by right-
multiplication of Spin(n + 1) on itself precomposed with the inclusion I. We set T :== A,41 : P = Spin(n +1) —
SO(n +1) = SO(S") and define the projection rtp : P — S" which makes P into a principal fibre bundle over S"
by 7tp 1= Tso(s) © Ant1. Now (P, 7) is a Spin-structure for S". We summarize the situation in two commutative
diagrams:

-o(id x1)

P =Spin(n +1) P x Spin(n) P
lml lmmn J{Am
mp=Tsosm o1 ( SO(S") = SO(n + 1) SO(S™) x SO(n) ~1 go(gm)
lnso(m
gn

Example 3.5. Let M = S' = [0,27]/{0, 27t} with the metric it inherits from its embedding into C =~ R? and the
counterclockwise orientation. Since in dimension 1 there is only one positively oriented unit-vector in each tangent space,
we see that SO(S') =~ S'. Note that SO(1) = {1} and Spin(1) = {£1} = Z,. The first Spin-structure we define is
Py := S x Z, with the obvious projections and right-action of Z. We call Py the trivial Spin-structure on S' . There

is a second Spin-structure on S'. Define P, := [0,27t] x Zy/ ~ where (0,+1) ~ (271, F1) with projection onto S'
7tp, ([x,g]) = x. We call P, the nontrivial Spin-structure on S* . The two Spin-structures are inequivalent.

Remark 3.6. Not every Riemannian manifold allows a Spin-structure. Examples are the even-dimensional real projec-
tive spaces RIP2™ | which are not orientable and so, in particular, not spin. Orientable examples, which are not spin, are
the even-dimensional complex projective spaces CIP?™.

It is remarkable that, although the definition of a Spin-structure explicitely references the Riemannian metric, the
existence of a Spin-structure and the number of inequivalent Spin-structures are independent of the metric in the sense
that if a manifold M admits a Spin-structure for one Riemannian metric g, then it does so for every other Riemannian
metric and the number of inequivalent Spin-structures is constant when viewed as a function of the metric. In fact,
even more is true: a manifold is spin if and only if its second Stiefel-Whitney class vanishes and then it admits as many
inequivalent Spin-structures as there are elements in H'(M; Zy). In particular, being spin is a topological invariant.

For the next definition recall the associated vector bundle construction from Definition 2.20.

Definition 3.7. (i) Let (M, g) be an oriented n-dimensional Riemannian manifold with Spin-structure (P, rr). Let
Ky @ Spin(n) — U(X,) be the fundamental Spin-representation. The complex vector bundle

SM =P x, £,

is called the spinor bundle of (M, g) and the Spin-structure (P, 7).
(ii) A section s € I'(M,ZM) is called a spinor field or, sloppily, a spinor .

Remark 3.8. (i) The spinor bundle ZM has rank dim %, = ol3, Moreover, since x,, is a unitary representation it
comes equipped with a canonical bundle metric as described in Proposition 2.23.
(ii) Recall that in case n = 2m the fundamental spin representation splits into the direct sum Koy = x5, Dx,, of the
positive respectively negative half-spin representations Kzim : Spin(2m) — U(Z;—rm). To this splitting corresponds a
splitting of the spinor bundle (see Remark 2.21)

IM=LX"M@®L M,
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where the vector bundles

YEM:= P x, s &F
are called the bundles of positive respectively negative half-spinors . The sections s € T(M,EZtM) are called
positive respectively negative half-spinors .

Remark 3.9. While R" is a real vector space, the space of spinors ¥, is a complex space. We can view %, a real vector
space by restricting scalar multiplication to R. This allows us to consider the (real) tensor product R" ® %,,. But note
that R" ® X, carries a canonical structure as a complex vector space where scalar multiplication with complex numbers
is given by multiplication on the second factor.

The analogous statement applies to the real vector bundle T M, the complex vector bundle Z.M and their tensor product
TM®XZM.

Definition 3.10. Let (M, g) be an oriented Riemannian manifold with a Spin-structure (P, t) and let M be the
associated spinor bundle. A Clifford multiplication is a vector bundle homormorphism of complex vector bundles

u:TM®EM — LM

VRQUC — V-0

satisfying
v-(w-o)+w-(v-0)=—-2g(v,w)-o forall xeM,v,we TyM,0ceLM,.

Proposition 3.11. Let (M, g) be a Riemannian spin manifold with spin structure (P, 7v) and let M be the associated
spinor bundle.

(i) If nis even there exists exactly one Clifford multiplication. If n is odd there exist exactly two Clifford multiplications
which are the negative of each other. They can be distinguished by the action of the complex volume element, i.e., we
have either

WS o= il oAl (e2-(...(en-0))) =0 forall xe M,oeLM,,

or

wgaz—(r forall xe M,oceXM,,

where (eq,...,ey) is an OONB of Ty M.
(ii) Any Clifford multiplication satisfies

(v-o,Ty=—(o,v-T)y forall xe M,veTM,0,T7€eXM;.

Proof. To proof (i), we first note that the tangent bundle TM is associated to the Spin-structure (P, 7r) via the
representation A : Spin(n) — SO(n). More precisely, the vector bundle homomorphism

Px,R" > TM

[P/ (xlr- . ~/x7l)t] = Z XiTC(P)i
i=1

is an isomorphism. Here, for p € Py we have 7t(p) = (7(p)1,...,m(p)n) € SO(M)x. Alluding to Remark 2.21
again, it follows that the vector bundle TM ® LM is associated to P and the representation A ® k;, : Spin(n) —
Gl(R" ® %) through the isomorphism

P XA®ky (IR”@Zn) - TMQEIM
n
[px®0c]— Y xim(p)i®I[p,0].
i=1

If i : R"®ZX, — X, is any Clifford multiplication as in Definition 1.52, we define the Clifford multiplication
H:TM®EM = P x)gy, (R"®XL;) = P x4, Ly = XM
[px®@0] = [pi(x©0)] = [px-a].
We have to check that u is well-defined, i.e., is independent of the chosen representative. For this, let p, g € Py
and let g € Spin(n) be the unique element such that g = p - ¢. Then we have
[px®@c] =[p g A@r)(g™Nx®0)] = [9, A7) () @Ku(3™")(0)]

and

[P ii(x®0)] =[p-&xu(g ) (f(x®0)] = [g,x:(g ) (F(x®0))].
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From Proposition 1.56 we know that

(8 (i(x ®0) = H(A®K) (g™ )(x®0)) = A(g™) (%) ®Ku(g™")())
so that
[p, i(x®0)] = [9,%2(g™ ) (Fi(x ®0))] = [q, FA(E™")(¥) ®Kal(g™")(0))]

as required.
All statements now follow from Proposition 1.53 and Corollary 1.54. O

Remark 3.12. (i) In case the dimension n of M is odd, we will always fix the Clifford multiplication for which the
complex volume element acts by + idx .
(ii) We extend the Clifford multiplication to vector and spinor fields, that is, for X € V(M) and ¢ € T'(M, ZM) we let
X - ¢ be the spinor field defined by

(X-@)x:=Xx-@(x) forall xeM.
All relations holding pointwise then also hold as field equations, e.g., we have
X-Y-9)+Y - (X-¢)=-29(X,Y)-¢ forall X, YeVM) ¢eT(MZIM).
Theorem 3.13. There exists a metric connection V.= V* : T(M,ZM) — T'(M, T* M ® M) on ¥.M satisfying
3.1) V(Y -9)=VxY-9+Y-Vig forall X,YeV(M),¢eT(MIM).

The connection V'* is called spinor connection or Levi-Civita connection .

Remark. In fact, V¥ is the unique metric connection satisfying (3.1). Unfortunately, we will have to content ourselves
with the existence of V.

Proof. Let (P, 7r) be our Spin-structure with which XM is associated.
Step 1: For any local sections : M < U — Plet (ey,...,e,) := mos : U — SO(M, g) be the projected local
OONB. For any ¢ € I'(U,XM), given by ¢ = [s, v] for some v € C*(U,%,), define

1 n
(3.2) xg =[5 X(0)]+ 7 dei-Vifei-g
i=1

forany X € V(M). Obviously, V* is C-linear with respect to ¢, C* (U, C)-linear w.r.t. X and satisfies the Leibniz
rule.

Step 2: We show that (3.2) is independent of the section s. Let s, ¢ be local sections of P, which are, without loss
of generality, defined on the same open set W < M. We let 0 : W — Spin(n) be the unique smooth map which
satisfies

t=s-0
and v, w € C*(W, L) such that ¢ = [s,v] = [t,w]. Then
[5,0] = [s- 0, ka(c™1)(0)] = [t,0].
We consider the first term on the right-hand side of (3.2). We have
X(w) = X(ka(0™1)(0)) = (d(in 00~ X)(2) + 100 (™) (X (2))

Since Spin(n) < Cl;, we have d(Lg) X = g- X respectively d(R¢) X = X - ¢ (cf. Example 1.14) and using Exercise
16 we see that

(d(xy 00~ HX)(v) = (dy o dinv o doX)(v) = —ku(d(L,-1) 0 d(Rg-1)doX)(v)
=~k (e (doX)o 1) (v) = —p (0 Hu(doX - oY) (0),

[t, X(w)] = [s- 0, —Ky (U_l)Kn(dO'X . 0_1)(0) + Kn(O'_l)(X(ZJ))]
(3.3) =[5, X(0)] =[5, k0 (doX - ) (0)].
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In order to obtain an expression for do X - ¢! we will first calculate A, (doX - c~1). Denote A = (A ij)=Aoo:
W — SO(n). Let vy : (—¢,€) — M be a curve with ¢(0) = x € W and 7/(0) = X € TyM. Then

MdoX -0 = G Mool o)) = g (oron(®) Mol ™)
_ c(11t|t=0A oq(t)- Al = dAX - A!
= > (X(Aw)Aj)

k=
1 &
D) 2 X(Azk)A]kXei,ev

i

where the X, ¢, are the matrices from Exercise 5. By Proposition 1.47 we now have

n
Z X(Aix)Ajiei -ej -

i,jk=1

(3.4) doX. ot =

Sl

Next, we consider the second term on the right-hand side of (3.2). Recall that the tangent bundle is (isomor-
phic to ) the vector bundle P x, R" associated with the principal fibre bundle P of our Spin-structure and the
representation A. With (eq,...,e,) = mosand (fy,...,f;) = mot the projected local OONBs, we have for each
i=1,...,n,

f,=[tej] =[s-0,e]=]s,Al0)e;] = [s, Ae;] = [ Z A]ze]] = an Ajils, ef]
k=1

n
= D, Ajiej.
k=1

which implies

n n n
V];(Cfi = 2 V%C(A/,e]) = Z X(A],)e] + Z AﬁVI;(Cej .
j=1 j=1 j=1

Hence,
n
D Vi o= D Aje;- (X(Aki)ek + AkiV[;’(Cek)) ¢
i=1 ijk=1

Y, X(Ar)Ajiej-ex- 9+ Y AjiAiej- Ve
ijk=1 ijk=1

[S, Kn ( Z X(Aki)Ajiej . ek) (U)] + Z A]'iAk,'ej : Vlgcek Q.

ijk=1 ijk=1

Since A~! = Af we have D Aji Ay = 0y and using (3.4) we obtain

n
D Vi@ =45, ku(doX 07D+ ) e Vilei- g,
i=1 i=1

which in turn, using (3.3), implies

171
12 Xel‘P

»J:M—\

n
Zf-vlgffi-(p.

Step 3: We have to show that our connection is metric and satisfies (3.1). To see that V is metric, lets : U — P
be a local section with (eq,...,e,) = mos: U — SO(M, g) the accompanying OONB, ¢ = [s,v], i = [s,w] €
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I'(U,ZM) withv,w € C*(U, %Z,) and X € TxM. Then, by definition of the bundle metric, see Proposition 2.23,
we have

X, ) = X(v,w) = (X(v),w) + (v, X(w)) = {[s, X(v)], ) + (@, [5, X(w)]).

Using the skew-symmetry of Clifford multiplication, that the Levi-Civita connection is metric and the Clifford
relations, we see that

(ei- Vi ei 9, p) +{p,e; Vi ey =(ei- Vi e; g+ Vi ei-e-9,¢)
= —2g(e;, Vi< e) g, 9,
which vanishes since
0= Xg(ej e;) =2g(e;, V¥ e;).
Hence,
X,y = s, X(0)], ) + (@, [s, X(w)]) = (Vx@, ¥) + (o, Vx ).
To see that V satisies (3.1) welet Y = [s,y] € ['(U, TM) with y € C*(U,R"). Observe that

n
y] = lsr > viei
i=1

HM:
UJ
5
I
L
A
=
.y
~—
L

and
Y-¢=1[s,y] [s,0] =[s,xa(y)(0)].
Thus
(3.5) Vx(Y- @) =1[s,X(xu(y)(v))] + i Z e; Vlg(ce, Y -g.

i=1

The first term on the right-hand side is
X(xn(y)(v) = X(Kn(y)) () + £a(y)(X(0)) = xa(X(y))(0) + Kn(y)(X(0))

= D X(yi)ra(en) (v) + xn(y) (X(0)) = Y X(g(er, Y))rn(e;) (0) + ka(y)(X(2))

i=1 i=1

so that

M=

(3.6) [s, X(kn(y)(0))] = ), X(g(ei, Y))ei- ¢+ Y- [s, X(0)].

1

Using the Clifford relations, we see that the second term on the right-hand side of (3.5) is

n n n
diei-Vie Yop=—) &Y -Vie 923 g(Vie,Y)e,Y) ¢
i=1 i=1 i=1
n n n
= Z Y-e;-Vi<ei ¢ +2 Z g(e;, Y)ViCe; -9 —2 2 (Ve Y)e; - 9.
i=1 i=1 i=1
Since the Levi-Civita connection is metric, for each j = 1,...,n we have

n n n
Z g(e; Y VX el,e] Zg e, Y VX e ej) = Zg e;,Y g(el,VX e]) —g(Y, VX e])
i=1 i=1 i=1
n n

g(Y, V];( e;)g(e;, ej) = 2 (Y, VX ej)e; ej),
=1 i=1

1

which implies

Zel VX e Y- q)—fY Ze, VX e - q)—l—Egel, VX e .
i=1 i=1
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From this, (3.5) and (3.6) we obtain

n
Z g(e;,Y))e; - q)+2gel, WWile 9 +Y Vxo
i=1 i=1

= Vi (Z g(e;, Y)e,-) p+Y-Vxg
i=1

=VEY 9 +Y-Vxo.

Remark 3.14. On any Riemannian manifold (M, g) there are vector bundle isomorphisms
b
T™ —<ﬁ_> "M

called musical isomorphisms which are given by the metric, i.e., for any x € M and X € T, M we have

T.M3 X X" e T*M
with
XP(Y) = g2(X,Y)

and

$=h"1,

Definition 3.15. Let (M, ) be a Riemannian spin manifold with Spin-structure (P, 1), associated spinor bundle 2. M
and Clifford multiplication y : TM ® M — X.M. The Dirac operator D is the 1st order linear differential operator

) ﬂ@ld (

D:T(M,=M) % T(M, T*M @ =M M, TM®EM) L T(M,EM).

Proposition 3.16. Let (ey,...,e,) be a local ONB. Then the Dirac operator is given by

n
D¢ = Z e Ve, ¢
i=1

forall ¢ € T(M,LM). Moreover, we have
D(fg) =gradf ¢+ fDe¢
forall f e C*(M,C) and ¢ € T(M,LM), where grad f := (df)*.
Proof. Lete; = e? foralli=1,...,n. Then
n
Vo = Z € ® Ve,
i=1
so that

n n
Do = po(4®id) <Z£ ®V,, )—V(ZQ‘@VQ(P) :Zei've,—?
i=1 i=1

Using the formula we just proved, we see that

n n

Zel Ve (fo) = Z Do+ fVep) =D ei(flei-@+ Y e Vep=grad f- ¢+ fDg.
i=1 i=1 i=1

Definition 3.17. Let (M, g) be a Riemannian manifold.
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(i) Denote by B(M) the Borel o-algebra of M, i.e., the smallest o-algebra containing all open sets of M. We define the
Riemannian measure / volume p := g on M to be the measure which in every chart (U, x) is given by

dp 1= 4/det(gi;)dA,

where A is the Lebesque-measure in (U, x) and

gi=8(Z ) for ij=1,...n,

are the components of the matrix of g associated with the coordinates (x',...,x™).
(ii) Let (E, tg; V) be any K-vector bundle over M and ¢ € I'(M, E). The support of ¢ is the set

suppe := {x € M| p(x) # 0}.
We say that ¢ is compactly supported if suppg is compact and denote the space of all compactly supported sections
by

T'.(M;E) :={p € I'(M, E) | suppg is compact} .
In the case of E = TM we additionally introduce the notation
V(M) :=T.(M, TM).
(iii) Suppose that (E, 7tg; V') comes equipped with a bundle metric (-, ). We define the L2-inner product (-,-) := (-,-);2
onT.(M;E) by

(0002 = | Cordns

and the associated L>-norm |- | := |- |2 by
9li2 =1/ (9,9).

Remark 3.18. Note that I'.(M;E) is in general not complete w.r.t. | -|;2, i.e., the pair (I.(M;E),(-,-)) is only a
pre-Hilbert space.

Definition 3.19. Let (M, g) be a Riemannian manifold and X € V(M) a vector field. The divergence of X is the
function div X € C*® (M) given locally by

n
divX = Z gle;, Ve, X) = trg(VX),
i=1
where (e1,...,en) is a local ONB.

The familiar Divergence Theorem from vector calculus generalizes to Riemannian manifolds and we state
it here without proof.

Theorem 3.20. Let (M, g) be a Riemannian manifold and X € V.(M). Then
j div Xdpg = 0.
M

Notation and Remarks 3.21. We denote by TM® the complexification of the tangent bundle . Formally, this is the
complex vector bundle over M given by

™™ = | J (T:M)©
xeM
where (TyM)€ = TyM ®g C is the complexification of TyM. Each element z € (T M)C can be written as

z=v+iw with v,we T, M.

We denote V&CC)(M) =T (M, TMC) and call its elements complex (compactly supported) vector fields . Each element
Z € V& (M) can be written in the form
Z =V +iW forsuitable V,WeV(M).

We extend the Levi-Civita connection ¥V complex linearly to a connection of TMC, denoted by the same symbol, and we
do the same with the divergence. The Divergence Theorem is then of course also true for all complex compactly supported
vector fields.
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Proposition 3.22. Let (M, g) be an oriented Riemannian spin manifold with a fixed Spin-structure. Then the Dirac
operator is formally selfadjoint, i.e., we have

(Do, y) = (¢, Dy) forall ¢, e T(M;ZM).

Proof. Let p € M and (ey, ..., e;) be an ONB defined in a neighborhood of p with (Ve;), = 0. Then at p we
have

(Do, Pyp = D i Ve g, pyp = — Y (Vep - )

i=1 i=1

((e)pl@rei- ) — <@, Veei- P)p — (@ e Veh)p)

||
.M:

Il
—

|I
.M=

Il
-

((ez)p<¢rel ) —<{o,e- vellp>P)

M:

(61)p<(Pr ei- ) +<{o, Dlp>p .

Il
—

Define a complex compactly supported vector field X € VE (M) by the condition
(gxr ®id)(Xy, W) = —(@(x), W -9p(x))x forall WeT:M,xe M.
Then

n n
div X(p Z (g®id) (V. X, ¢;) 2 )p(g®id) (X, ¢;) — (§®id)(X, Veei)p)
i=1 i

Z p(g®id)(X, ;) Z e)plg.ei ),

from which we deduce

(De,p) =divX +{p, D).
The statement of the theorem now follows from the Divergence Theorem. O

Corollary 3.23. Let (M, g) be a compact Riemannian spin manifold with a fixed Spin-structure. Then
ker D = ker D?.

Remark 3.24. We call any spinor ¢ € T'(M, M) with D?>¢ = 0 harmonic and in case M is compact, this is equivalent
to Dg = 0.

proof of Corollary 3.23. We only need to show ker D? < ker D. Let ¢ € ker D?, i.e., D?¢p = 0. Then we also have
(D%, ¢) = 0. Hence,

0= (D?*¢p,9) = (Dg,Dg) = JM<D<PID(P>dVg-

The integrand is a nonnegative, continuous function. We claim that it must be zero. Assume it is not, i.e., there
is a point p € M such that (D¢, Dg), > 0. By continuity, there is an open neighborhood of p on which this
function is positive. Since the Riemannian measure is of full support (every open set has positive measure),
the integral would be positive. A contradiction. Hence, (D¢, D¢) = 0 which implies D¢ = 0. g

3.1. The Lichnerowicz formula. The goal of this section is to come back to the very first lecture and see that,
in a suitable sense, the square of the Dirac operator is a Laplacian. The corresponding formula is called the
Lichnenrowicz formula (see Theorem 3.31) and it shows that there is an interesting interplay between the
geometry of a manifold and the existence of harmonic spinors, i.e., solutions to the equation D?¢ = 0.

Let (M, g) be a Riemannian manifold. Recall the definition of the Riemannian curvature tensor

R(X,Y)Z = VxVyZ —VyVxZ - Vx| Z

the Ricci curvature tensor

Ric(X,Y) = Y g(R(e;, X)Y, ¢;) = tr(U — R(U, X)Y),

oE

i=1
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and the scalar curvature

n
scal = Z Ric(e;, e;) = trg((U, V) = Ric(U, V)) Z g(R(ei ej)ej, ;) -
‘ i
The Riemannian curvature tensor has the following symmetry properties,
R(X,Y)Z =—-R(Y,X)Z,
SR(X,Y)Z,W) = —g(R(X,Y)W,2Z),
gR(X,Y)Z,W) =¢g(R(Z,W)X,Y),
R(X,Y)Z+R(Y,Z)X+R(Z,X)Y =0.
The last equation is 1st Bianchi-identity.

It follows from the symmetry properties of the Riemannian curvature tensor, that the Ricci tensor is sym-
metric, i.e,, Ric(X,Y) = —Ric(Y, X). It thus defines, by duality, a (pointwise) selfadjoint endomorphism field
ric,

g(ric(X),Y) = Ric(X,Y).

Definition 3.25. Let M be a manifold and (E, 7tg; V) a K-vector bundle over M equipped with a connection VE :
['(M,E) - T'(M, T*M ® E). We define the curvature tensor R of (E, VE) by

RE(X,Y)p = VEVY9 — ViV~ Vixy@ forall X,YeV(M),¢el(ME).

Remark 3.26. A calculation completely analogous to the one for the Riemannian curvature tensor shows that RF is
indeed C®-linear in all three arquments so that it is indeed a tensor, i.e., a section RE € T(M, T*M ® T* M ® End(E)),
and that it is antisymmetric in the first fwo arquments, i.e., RE(X,Y)r = —RE(Y, X)o forall X,Y € TeM, 0 € Ey,
xe M.

Proposition 3.27. Let (M, g) be a Riemannian spin manifold with a fixed Spin-structure (P, 7r). Then
REM(X,Y)o Z ei-R(X,Y)e; -0,

where (eq, ..., ey) is an ONB of the corresponding tangent space.

Proof. Let p e M and let (ey,...,e,) be alocal OONB defined on a neighborhood U of p with (Ve;), = 0 for all
i=1,...,n. Choose asections: U — Psuchthat mos = (e1,...,e;). Let X,Y € V(M), v e C*(U,%,) and let
@ = [s,v] e T'(U; 2M). Then we have (cmp. the proof of Theorem 3.13, Step 1)

Ve = VX ([S,Y(v)] +1 .6 Vye- 4’)

i=1

=[5, X(Y(0))] + Z ei- Vxei-[s,Y(0)] + g
i=1

V% (e Vyei - 9)

T2

I
_

=

=[s,X(Y(v))] + i e~ Vxei-[s,Y(0)] + %
i=1

(Vxel Vyei-p+e-VxVye - ¢ +e-Vye;- quo>

Il
—_

Analogously, we have

(Vyel Vxei-p+e-VyVxe;- (p+el~VXei-V§<p) ,

=

V¥V = [, Y(X(@)]+ D ei- Vye; - [s, X(0)] + §
i=1 i

Il
—

and also
n
v[Zx,y]ﬁo =[s, [X 411 Z Vixyiei- ¢,

so that, at the point p, we have

R¥M(X,, Yp) (9(p) = 1 25 (e)pR(Xp, Yp)(er)p - 9(p),
i=1

as claimed. O
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Definition 3.28. Let (M, g) be a Riemannian manifold and (E, ng; V) a K-vector bundle over M, equipped with
a connection VE. The associated Bochner Laplacian , also called the connection Laplacian , is the linear second order
differential operator

(M, E) — T(E; M)
n
o= (VEVE9-VE o0)
i=1

where (eq,...,ey) is a local ONB. In case M is a spin manifold and E = XM is the spinor bundle associated with a
Spin-structure, we call A* := N*M the spinor Laplacian .

Proposition 3.29. Let (M, g) be a Riemannian manifold and (E, rtg; V') a K-vector bundle with a bundle metric (-, -)
and a metric connection VE. Then the associated Bochner Laplacian satisfies
(AFp,p) = (VEQ, VEY) forall ¢, eT(M;E).

In particular, AF is nonnegative and formally self-adjoint, i.e.,

(AEp,9) =0 and (AP, ) = (p,AEy) forall ¢, eT(ME).
Remark. The expression |V ¢|? has to be read as follows. The Riemannian metric ¢ induces a bundle metric g* on T* M
by
(o, B) = gx(a¥, B forall a,BeTiM,xe M.

The bundle metric g* is sometimes called the cometric . Now we can use the tensor product metric (-, )g on T*M ® E
which is given on pure tensors by

@0, BRT)g, =8, ), T)x forall a,peTyM,0,TeEx,xe M.

Then |V ¢|? is the square of the corresponding L2-norm of V ¢.

Proof. As before, we fix a point p € M and choose a local ONB (ej, .. ., e;;) defined on a neighborhood of p with
(Vej)p =0foralli =1,...,n. Then at p we have

(AEg, )y = Z<Velvel<p, p == (eVEp )~ (VEg, 5}¢>)p
i=1
(ez) <ve (PI¢>+ Z g(eifej)rl<v£[(f)f VeE]-IP>P
ij—1

M=:

Il
—

Mx

(ez)p<ve @ P)+ Z g 8115])p<ve,(l’r vg¢>p
i,j=1

Il
R

M:

(e) (Ve )+ Z (ei®Vig,e;@ Vi),
i,j=1

= YeD(VER )+ (VER, Vi), .
i=1

I
—_

In case E is a real vector bundle, we define a compactly supported vector field X € V.(M) by
&r(Xe, W) = (Viyo(x), p(x))y forall WeT,M,xeM,

and in case E is complex we substitute ¢ ® id for g to define X as a complex compactly supported vector field.
In both cases, a calculation analogous to the one in the proof of Proposition 3.22 shows that

n

div X(p Z ei)p(VEQ, ).

Hence, it follows from the Divergence Theorem that

(AFg,p) = (VE, VEY).
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Nonnegativity now follows by setting i = ¢ and formal selfadjointness of AF follows straightforwardly,

(AP, p) = (VEQ, VEY) = (VEY, VEg) = (AFy, ) = (9, AFp).

O

Corollary 3.30. In the situation of Proposition 3.29, every ¢ € I'c(M; E) which is AE-harmonic , i.e., satisfies AEgo =0,
is parallel , i.e., satisfies VE(p =0.

Proof. Let ¢ € T.(M; E) be harmonic. Since AFg = 0, we also have (Af g, ¢) = 0. By the last proposition,
0= (8%9,) = (VF9, VFg) = [ (VFg, VEqydns.

The same argument as in the proof of Corollary 3.23 shows that VE¢ = 0. O

Theorem 3.31 (Lichnerowicz formula). Let (M, g) be a Riemannian spin manifold with a fixed Spin-structure. Then
we have

D2 = A¥¢ + %scal ¢ forall @el(M,ZM).

Proof. Let p e M and choose a local ONB (e, ..., e,) with (Ve;), = Oforalli = 1,...,n. Then, at p, we have

n n
D¢ = Z e - Ve, (f?]“Vequ) - Z €i - (veiej Ve @ +ej- Ve, Ve @ ) Z €€+ Ve; Ve,
ij=1 ij=1 #=1
= — Z VgIVel(P + Zel e] <V€iv€j(P - Vejv@i(P) :
l<]

Since (Ve;)p = 0 and [e;, e]-]p = (Ve].e]- - Ve ].el-) p = 0 (the Levi-Civita connection is, by definition, torsionfree),
this is equal to
n

- Z (vfiv%q) - vveiei (P) + Z €i-€j- (vffvf?jq) - vfjvfz‘(/’ - v[ei,e/] 90)

i=1 i<j
z =M z REM(
=A <p+Zei~ej-R (ei,e))p =A Pts Z ej-ej- R="(ej e) .
i<j z; 1

It remains to show that the second term on the right hand side is equal to 1/4scal ¢. By Proposition 3.27 this
term is

1 & 1
3 > eiej-ex-Rleieje ¢ = ¢ D1 g(R(eiejex,er)eiej-ex-er - @
k=1 ijkl=1

1o (1
=3 > <3 7 8(R(ej e)ex + Riej, ex)e + Rieg ei)ej e))e; - ¢ - e
=1 ijk
p-w. dist.
n
+ Z R(ei ej)ei ep)e; - ej e+ Z el,ej)ej,el)ei-ej-ej)el-q).
ij=1 ij=1

By the first Bianchi-identity for the Riemannian curvature tensor, the first sum vanishes and we are left with

1 n n
3 Z Z R(ei ej)er ei)ej-e;-e;-+ Z g(R(ej ei)er e)ei-ej-ej |e;- @
I=1 \ij=1 ij=1
1
== Z Ric(e;, ep)e;-e;- ¢ = —— Z Ric(e;, e;)ej-ej- ¢ = fscalqo,
il=1 z 1

where we have used the symmetry properties of the curvature tensor, the Ricci curvature and the Clifford
relations. O
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Corollary 3.32. Let (M, g) be a connected, compact Riemannian spin manifold with fixed Spin-structure. Assume that
scal > 0 and that there exists a point p € M such that scal(p) > 0. Then there do not exist any nontrivial harmonic
spinors, i.e., the equation

Dg =0, ¢ eI (M,XM)
has only the trivial solution.

Proof. Let ¢ € T(M,~M) be a harmonic spinor. Then D?¢ = 0 and so

0= (D¢, 9) = (A%, 9) + 1(scal g, p),
thatis,

~IVg = ~(V9, V) = ~(8%0, ) = d(scalg, ) = } | scal lglPdns.
The right-hand side is nonnegative, so we must have V@ = 0. Since the spinor connection is metric, this
implies that | ¢|? is constant,
X|g|?* = X{p, 9> = (Vx@, 9>+ (9, Vxp)=0+0 forall XeT,M,xeM.
By assumption scal(p) > 0 which means we must have scal > 0 on an open neighborhood of p. This implies

|¢|? = 0 for otherweise the integral on the right hand-side was positive. O

3.2. Special Spinors and Geometry. We constructed the spinor bundle and its covariant derivative using the
metric and the Levi-Civita connection. This means that the geometry of the spinor bundle is closely related
to the geometry of the underlying manifold, a fact which can be seen in the formula for the curvature tensor
of 2M or in the Lichnerowicz-formula. It comes as no surprise that the existence of spinors satisfying certain
field equations has strong geometric implications.

Definition 3.33. Let (M, §) be a Riemannian spin manifold with a fixed Spin-structure. Then a spinor ¢ € T'(M,LM)
is called parallel if

Ve =0,
that is, if Vx ¢ = 0 for all X € V(M).

Lemma 3.34. If M is connected and ¢ € I'(M, EM) parallel, then the function | @| is constant.
Proof. We have for every X € V(M),
X|g|* = X{q, ¢) = (Vx, @) + {9, Vxp) = 0+0.
Hence, |¢|? is constant and then so is | ¢|. 0

Theorem 3.35. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. If there exists a
nontrivial parallel spinor ¢ € IT'(M,LM), then (M, g) is Ricci-flat, i.e., Ric = 0.

Proof. Let ¢ € T(M,~M) be nontrivial and parallel. By definition of the curvature tensor R*M
R*M(X,Y)p =0 forall X,Y e V(M).

Fix a point x € M, let (e, ..., e,) be an ONB of TyM and X € Ty M. By Exercise 22 we have

, we have

0= 3 e R¥M (e, X)g(x) = +rics(X) - plx).
i=1

The previous lemma assures ¢(x) # 0. Hence, ricy(X) = 0 for all X € TyM, i.e., ricy = 0. O
A more general notion than that of a parallel spinor is given in the following definition.

Definition 3.36. Let (M, g) be a Riemannian spin manifold with a fixed spin structure. A spinor ¢ € I'(M,X~M) for
which there exists a number € C such that

Vxp=(X-¢ forall XeV(M)
is called a Killing spinor with Killing number { .

Remark 3.37. The defining equation for a Killing spinor is in general well overdetermined. Indeed, if M has dimension

n the spinor bundle has rank 21"/ Hence, locally, Vx¢ = {X - ¢ is a system of 2\"2! equations in n variables. As we
will see in the following propositions, neccessary conditions for Killing spinors to exist are quite restrictive.



ADVANCED DIFFERENTIAL GEOMETRY II - SPIN GEOMETRY WINTER SEMESTER 2020/21 33

Proposition 3.38. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure and ¢ € T'(M,LM)
a Killing spinor with Killing number { € C. Then

(i) if @ is nontrivial, then ¢(x) # 0 forall x € M,

(ii) D(¢) = —nlg, i.e., @ is an eigenspinor for the Dirac operator with eigenvalue —n(.

Proof. (i): Since we already handled the case of parallel spinors, we can assume ¢ # 0. Let ¢ : (—¢,€) — M be
any smooth curve and let ¢ : (—¢,€) 3t — ¢(y(t)) € ZM. Since ¢ is a Killing spinor we then have

T90) = (Vo9 = £7'(0) - 9(r(1)) = L/ (6)- (1),

i.e., 1p satisfies a first order ordinary linear differential equation. By uniqueness of solutions of ODEs, (0) =
@(7(0)) = 0 would imply ¢ = 0. Since v was arbitrary, this in turn implies ¢ = 0.
(ii): Locally, we have

n n
Dp=) e-Vep =) e Gei-¢=—nig.

i=1 i=1

Definition 3.39. Let (M, g) be a Riemannian manifold. A vector field X € V(M) is a Killing (vector) field if

Lxg=0,
where the Lie-derivative on 2-tensors is given by
(Lxh)(Y,Z) :=Xh(Y,Z) —h(LxY,Z)—h(Y,LxZ)
forall X,Y,Z € V(M).

Remark 3.40. The vector field X € V(M) is Killing if and only if

0=2Xg(Y,Z) - g(LxY,Z) —g(Y, LxZ) = g(VxY,Z) + g(Y,VxZ) — §([X, Y], Z) — g(Y, [X, Z])
=8(VxY,Z)+g(Y,VxZ) — g(VxY = VyX,Z) = g(Y,VxZ — VzX)
= g(VyX,Z) +g(Y,VzX),

ie., ifand only if Y — Vy X is a skew-symmetric endomorphism of the tangent bundle.

Remark 3.41. Let (M, g) be a Riemannian manifold and assume for simplicity that M is compact. The diffeomorphism
group Diff(M) of M is an infinite-dimensional (Fréchet-) Lie group and V(M) together with the Lie-bracket [-,-] on
vector fields is its Lie algebra. This can be seen as follows. Suppose we are given a one-parameter group t — @' of
diffeomorphisms ®' of M with ®° = idpg. Then p — X, := d/dt|t:0®t(p) clearly is a vector field of M. On the other
hand, given any X € V(M), then, by compactness, X is complete, i.e., for any starting point p € M the flow @' (p)
exists for all time t € R. In particular, t — Y is a one-parameter group of diffeomorphisms with ®° = id .

Inside Diff(M) we have the isometry group

Isom(M, g) := {® € Diff(M) [ d®Dx : (TxM, 8x) = (To(x)M, 8o (x)) is an isometry for all x € M} .

This is a (finite-dimensional) Lie group as in Section 1.1. While for a generic Riemannian metric g on M the isometry
group Isom(M, g) will be trivial, there are Riemannian manifolds whose isometry group has dimension = 1. The most
prominent example is of course (5", gpounq) Wwith isometry group Isom(S", gpuna) = O(n + 1). A noncompact example
is the hyperbolic plane (H, gp,), where H = {(x,y) € R? |y > 0} and Shyp = 1/2(dx? + dy?), with isometry group
Isom(H, gpyp) = SI(2; R) acting by Mobius transformations.

A Killing field X is a vector field for which the associated flow @ is a one-parameter group of isometries of (M, ),
ie., for each t € R the map M 3 p — @ (p) € M is an isometry. Thus, the existence of a Killing field X € V(M) on a
Riemannian manifold (M, g) is equivalent to the assertion that the isometry group Isom(M, g) has positive dimension.
Killing fields are sometimes called infinitesimal isometries.

A typical Killing field on the round sphere can be obtained by differentiating the one-parameter group of rotations
around a fixed axis. An example of a Killing field on the hyperbolic plane is a% which corresponds to the one-parameter
group of translations along lines parallel to the x-axis.
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Proposition 3.42. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure and ¢ € T'(M,LM)
a Killing spinor with Killing number { € R. Then the vector field

n
X = Z g, ej- preje V(M),
j=1
where (eq, ..., ey) is a local ONB, is a (possibly vanishing) Killing field of (M, g).

Proof. Let p € M and (ey, ..., en) a local ONB in a neighborhood of p with (Ve;), = Oforallj =1,...,n. Let
Y € T,M. Then, at p, we have

n

VYX—IZ (g ei-)lej +{@ ;- 9)Vye))

Il
= T

(Vyg,ei- @)+ <@, Vy(ej- 9)))) e

-
I
-

||
M:

((Vyg,ei-@)+{@,Vye;- @)+ {(@,e;-Vy@))) e

~.

- Il
"M= -

(<Y p.ejp)+{p,e;-Y-9))) e

2.0 Y @Y i qpej,

Il
-

-.
Il
—_

so that

8(VyX,Z7) ICZ@»’, Y-g—Y-e-9)glej, Z 1€Z<<p, (e, Z)(ej-Y -9 =Y -¢-9))
j=1 j=1

=i, Z-Y-9=Y -Z-¢),

which is skew-symmetric in (Y, Z), i.e., Y — VyX is a skew-symmetric endomorphism of the tangent bundle
TM. By the last remark, X is a Killing field. 0

Proposition 3.43. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. Assume there
exists a Killing spinor ¢ € I'(M, M) with Killing number { € C. Then we have:
(i) ric(X) = 4(n — 1){?X. In particular, (M, g) is an Einstein manifold with {* = % (Scal ) and { € Ror { € iR.

(ii) If ¢ # 0 then (M, g) is locally irreducible, i.e., no point admits a neighborhood U such that (U, g|y;) is isometric to
a Riemmanian product (V,gyv) x (W, gw).

Proof. By definition of the curvature tensor we have
REM(X,Y)p = VxVyg = VyVx¢ = Vix ¢ = Vx(CY - ¢) = Vy((X - ¢) — {[X, Y]g
= E(VXY-go+Y~VXg0—VyX-(p—X~Vyfp—[X,Y]-go)
= (VXY = VX - [X,Y])o+T(Y-{X -9 —X-0Y-9)
—2(Y- X=X -Y)g.
Exercise 22 now gives

n n n
ric(X) - ¢ = —22 ej- R*M(X, e;)q = —2@2261- ej- X —X-e)p = —20° Z](el2 X —e-X-e)¢p
i=1 i=1 j

272 Z X4t X+29(X,e)e))p =4(n—1)X - ¢.
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By Proposition 3.38(i), ¢ is nowhere zero, which implies ric(X) = 4(n — 1){2X, or, equivalently, Ric(X,Y) =
4(n —1)2%¢(X,Y). A straightforward calculation yields

n
scal = Z Ric(e;, ¢;) = Z n—1)0%g(e;, e) = 4n(n —1)22.

To see (ii) assume U © M is open and that (U, g|;;) is isometric to the Riemannian product (V, gv) x (W, gw)
by an orientation preserving isometry f. We give (V x W,gyxw = gv @ gw) the Spin-structure induced
by f so that the spinor bundles over U and V' x W are isomorphic by a vector bundle isomorphism which
preseres bundle metrics and covariant derivatives. We now view ¢ as a spinoron V x W. Let (x,y) e V x W,
X € TyV\{0}, Y € T,W\{0}, so that X +Y € T,V@®T,W = T, )V x W. Then RV*W(X,Y)Z = 0 for all
ZeT,VOT,W

From the above we have on the hand

RZ(VXW) (X Y

»NH

n
2 RVW(X,Y)e; - (x,y) =0

and on the other hand
REVWI(X,Y)p(x,y) = (Y- X = X-Y)g(x,y).
Since { # 0 and gy xw(X,Y) = 0 this implies
XY -9(x,y)=0.
But Clifford multiplication by a nonzero vector is an isomorphism (X - X - ¢(x,y) = —|X|?¢(x,y)), hence
¢(x,y) = 0, which contradicts Proposition 3.38(i).
Corollary 3.44. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. Assume there exists
a Killing spinor ¢ € I'(M, 2M) with Killing number { # 0.
(i) If C is real and (M, §) complete, then M is compact.

(ii) If T is imaginary, M is noncompact.

Proof. By the last proposition we have Ric = 4(n — 1)¢2g. If { is real, 4(n — 1)¢> > 0, and Myers’ theorem
asserts that M is compact.

If { is imaginary, we have {? < 0 and by Proposition 3.38(ii), ¢ is an eigenspinor of D? with eigenvalue
n?¢% < 0. Assuming M is compact implies
0< (Dg,Dg) = (D’¢,¢) = n*¢*(9,9) <0,
a contradiction. Hence, M must be noncompact. O
3.3. Some Analytic Properties of the Dirac operator. We recall from Definition 2.12(i)(c) that for any K-vector
bundle E of rank k over a smooth manifold M, there exists for any point x € M an open neighborhood U = M

of x and a local frame s = (sq,...,s;) : U — EX, i.e., (51(y),...,sc(y)) is a basis of Ey for ally € U. Thus, we can
express any section ¢ € I'(U, E) (pointwise) w.r.t. (s, ...,s¢), i.e.,

k
= Z PiSi
i=1
with suitable ¢; e C*(U,K) foralli =1,...,k.
Definition 3.45. Let M be an n-dimensional manifold and E, F two K-vector bundles over M of rank k and I, respec-
tively. A K-linear map P : T'(M, E) — T'(M, F) is an m-th (m € INg) order (linear partial) differential operator if

e forall ¢ € T'(M,E) and for all x e M, (P¢)(x) does not depend on the values of ¢ outside of an arbitrarily small
neighborhood of x,

e for any (small enough) chart (U,x = (x',...,x")) of M, localfmmes s = (sy,...,50) : U— Eandt =
(t1,...,t;) : U — F., there exists, for every a € ING with |a] := a1 + ... +ay <m,a smoothfunctzon

Py:U— M(l,kK)
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such that for all smooth functions ¢4, ..., ¢x € C*(U,K) we have
k 8' |q)l
P ps XY Y (B o b

i=1 i=1j=1|a|<m

and where we require that for all y € U there exists an a with |a| = m such that
Pu(y) # 0.

We denote the space of all m-th order linear partial differential operators from E to F by 2" (M; E; F) and write
D" (M;E) for 2™(M; E; E).

Example 3.46. Let M be a smooth manifold and E, F two IKK-vector bundles over M.

(i) Any connection V : T(E; M) — I'(M, T* M ® E) is a 1-st order linear partial differential operator.
(ii) Any vector bundle homomorphism ® : E — F, extended to a map

@ :I(ME)es— (x— Pgs(x)) e [(M,F),

is a O-th order linear partial differential operator.
(iii) Any Bochner Laplacian AF : T(M,E) — T(M, F) associated with a connection VE in E is a 2-nd order linear
partial differential operator.

For the next definition, recall the m-fold symmetric tensor product VO™ of a K-vector spaces V, which is the
subspace of V& which is invariant w.r.t. the linear maps

V®m 9’(]1@...®Um — UU(])®"'®UU(111) € V®m, o e Sm.
Definition 3.47. Let M be a smooth manifold, E, F two K-vector bundles over M and P € 9™ (M; E; F).
(i) The symbol of P is the vector bundle homomorphism o (P) : (T*M)®™ ® E — F defined by
o(P) : (TM)O" QE, 39" Qe — %P(fms)(x) € Fy,

where s € T (M, E) is any extension of e € Ex and f € C*(M) is such that f(x) = 0and dfy = € Ty M
(ii) We call P elliptic if for all x e M and ¢ € T;; M\{0}, the map

0(P)g = 0(P)(E®" ®-) : Ex — Fx

is an isomorphism.
(iit) If we are given a Riemannian metric ¢ on M, and if E = F and P is of second order (m=2), we call P a
generalized Laplacian or an operator of Laplace type if

o(P)g = —[El - ide,

forallx e Mand ¢ e Ty M

Lemma 3.48. The symbol o(P) of P € 2™ (M, E; F) is well-defined. In particular, it is independent of s and f. More
precisely, in charts as in Definition 3.45, 0 (P)g is given by

> &P,
|a|=m

where £* = 1. &y and § = 2 ¢jdx;.

Proof. Exercise. O
Lemma 3.49. IfP € 2X(M; E; F) and Q € 2'(M; F; G), then Qo P € Z*/(M; E; G) and 0(Qo P)z = 0(Q)z 0o (P)e.
Proof. Straightforward using the previous lemma. 0

Example 3.50. Let (M, g) be a Riemannian manifold.
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(i) Suppose (M, g) is spin and fix a Spin-structure. Consider the Dirac operator D : T' (M, 2M) — T'(M, ZM), which
was defined as the superposition y o (§®idsp) o V of the spinor connection V : T (M, XM) — T(M, T* M®LM),
the tensor product $®id : T*M QXM — TM ® LM of the musical isomorphism and the identity of M and
Clifford multiplication y : TM ® EM — M. By Examples 3.46(i) and (i), V € 2'(M;ZM; T*M ® M),
f®id € QO(M; T*MQQEM; TMQ@XM) and y € @O(M; TM ®XM; M) so that by the last lemma we have
D € 2Y(M; M) and D* € 9?(M;ZM). The symbol of D is given by

o(D)s(e) = 7:D(f'p)(x) = grad - p(x) + f(x)Dg(x) = grad fo ¢ = & e,

where f, and ¢ are as in Definition 3.47. Since Clifford multiplication by a nonzero vector is a linear isomorphism,
D is an elliptic operator. Moreover,

0(D*)g(e) = o(D)g o o(D)ele) = §* - &¥ e = —[&Pe,

i.e., D? is a Laplace type operator.

(i) We consider the Laplace-Beltrami operator A : C*(M) = T(M,M x R) — C*(M), Vf = —div grad f. The
gradient of a function f is given by grad f = (d.f)%, a superposition of the differential and the musical isomorphism.
We argue as in the last example to see that grad € 91 (M;R; TM). From Definition 3.19 and Example 3.46(i), we
see that div € 2 (M; TM;R) so that, by the last lemma, we have A = —div o grad € 2%(M; R). To compute the
symbol of A, let x € M, f,h € C*(M) with f(x) =0,dfy =€ T¥M, h(x) =1, X € TyM as well as X € V(M)
with }N(x = X. Then, by Exercise 20 we have

o(grad)s(1) = %grad(flh)(x) = (d(fh),()ji = ((dfx)h(x) 4—f(x)dhx)ti = grad fxh(x) + f(x) grad hy
= gﬁ,
o(div)z(X) = %div (f'X)(x) = gx(grad fx, X) + f(x)div X = g(grad fx, X) = dfx(X) = &(X),

so that
(A)¢(1) = ~o(div)g o r(grad) (1) = ~&(8%) = ~ ¢
This is the justification for the name generalized Laplacian.

Before plunging into spectral theory, let us recall a few facts from functional analysis which can be looked
up in virtually any textbok covering densely defined operators in Hilbert space.

Let ./ be a seperable Hilbert space over K = R,C and A : 5# © D(A) — 4 a linear operator defined on a
subspace D(A) < 7, called the domain of A. We denote the inner product of .7 by (-, -), which we assume to
be C-linear in the first slot and C-antilinear in the second one.

e We call a linear operator B : .7 2 D(B) — ¢ an extension of A , denoted A < B, if D(A) < D(B) and
Av = Bouforallve D(A). We also write A = Bif A< Band B < A.

e We call A densely defined if D(A) < 5 is dense.

e Aishermitian if it is formally selfadjoint to itself, i.e., (Av, w) = (v, Aw) for all v, w € D(A).

e If Ais densely defined and hermitian, it is symmetric .

e The operator A is closed if the graph T'(A) = {(x, Tx) € S x H |x € A’} € H x H is closed.

e Ais closable if the closure I'(A) of the graph I'(A) of A is the graph of an operator A. We call A the
closure of A.

o If A is densely defined, the adjoint A* of A is the operator A* : J# 2 D(A*) — s with

D(A*):={we |l :D(A) v+~ (Av,w) € C is a continuous functional},

A*w =z,

where ¢ =: (-,z) (Fréchet-Riesz) and / : .7# — C is the continuous extension of ¢ to /7.
e We call A selfadjoint if A* = A.
o If Ais symmetric, then:
- A* is densely defined and closed.
- Aisclosableand A = A**  A*.
— For any selfadjoint extension B of A, we have

Ac Ac B=B*c A*.
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— We call A essentially selfadjoint if A posses a unique selfadjoint extension. We then have necces-
sarily A = A*.
e The resolvent set of A is

p(A) = {z € K| (A — zid) is bijective as map from D(A) —  and (T — zid) ! is continuous }

and the spectrum of A

spec(A) := K\p(A).
For a selfadjoint A we always have spec(A) < R.

e An eigenvalue of A is a number A € spec(A) such that (A — Aid) : D(A) — S is not injective.
We call dimker(A — Aid) the multiplicity of A and any v € ker(A — Aid)\{0} an Eigenvector for the
eigenvalue A.

e If A is selfadjoint and nonnegative , i.e., (Av,v) > 0 for all v € D(A), then spec(A) < [0, o).

Definition and Remarks 3.51. Let (M, g) be a Riemannian manifold and (E, tg; V) a K-vector bundle over M,
equipped with a bundle metric.

(i) A measurable section of E is a measurable' map s : M — E with 7tg os = id ;. We call two measurable sections

s,s' : M — E equivalent if they agree jig-almost everywhere and denote the corresponding equivalence class by [s].
(ii) The space of L*-sections of E is

T'2(M;E) := {[s] | [s] is an equivalence class of measurable sections of E with |[s]|;2 < o},

where we extended the the L2-inner product (-,-) = (-,-),2 and its norm | - |, initially defined on Tc(M; E), to all
equivalence classes of measurable sections, noting that it is independent of the representatives due to a.e.-equivalence
of the sections. (I';2(M; E), (-, -)12) is a complete, seperable IK-Hilbert space. In case E is the trivial IK-vector bundle
E = M x K, the corresponding space of L?-sections is just L3 (M), the space of (equivalence classes of) K-valued
square-integrable functions.

(iit) We view I'c(M; E) as a subspace of I';»(M; E) via the inclusion

1:To(M;E) s f— [fleT2(ME)
and note that, using a partition of unity and the usual approximation argument, it is not hard to see that I'.(M; E)
is dense in I';2(M; E).

(iv) Assuming (M, g) to be a Riemannian spin manifold with a fixed Spin-structure and using Proposition 3.22, we see
that the Dirac operator D defined on I'.(M; M) is a symmetric operator in I';»(M; ZM).

(v) If the vector bundle E over M comes equipped with a bundle metric and a metric connection V'E, then by Proposi-
tion 3.29 the associated Bochner-Laplacian A* defined on T¢(M; E) is a symmetric operator in T »(M; E). Simi-
larly, the Laplace-Beltrami operator A = —div grad defined on CX(M;K) is a symmetric in L3 (M) by Exercise
20.

(vi) More generally, any P € 2™(M; E), viewed as an operator in I';2(M; E) with domain D(P) = T.(M;E) is a
densely defined operator.

Theorem 3.52. Let (M, g) be a complete Riemannian spin manifold with a fixed Spin-structure. Then the Dirac
operator D, initially defined on I'c(M; M), is essentially selfadjoint in T';2(M; 2M). Denoting the closure of D again
by D, we have moreoever

ker D = ker D?.

Proof. The original proof by J. A. Wolf is contained in [Fr00]. A considerably shorter proof relying on distribu-
tion theory is given in [LM89]. g

Remark 3.53. The assumption that the manifold (M, g) is complete can 1.g. not be dropped. In fact, there are noncom-
plete manifolds for which the Dirac operator does not posses any selfadjoint extension. This is in stark contrast to the
following theorem.

Theorem 3.54. Let (M, g) be a Riemannian manifold and E a K-vector bundle, equipped with a bundle metric and a
metric connection VE. Let A be either the Bochner-Laplacian associated with V£, seen as an operator in T[2(M; E) with
dense domain Tc(M; E), or the Laplace-Beltra operator in L3 (M) with dense domain CE° (M; K). Then A has a unique,

Lyw.r.t. the Borel o-algebras B(M) and B(E)
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minimal® selfadjoint extension Ar, called the Friedrichs extension . In case that the manifold is complete, A is essentially
selfadjoint and the Friedrichs extension conincides with the closure of A.

We are interested mainly in the situation where the manifold M is closed , i.e., compact and without bound-
ary (we have not dealt with manifolds with boundary so far and we will not do so). Here, the spectral theory
of any essentially selfadjoint elliptic differential operator is completely understood. In particular, we know
the spectral situation of the Dirac operator, the Laplace-Beltrami operator, and any Bochner-Laplacian over a
closed Riemannian manifold.

Theorem 3.55 (see, e.g., [LM89, Chapter III, § 5, Theorem 5.8]). Let (M, g) be a closed Riemannian manifold and E
a K-vector bundle over M, equipped with a bundle metric. Assume P € 2" (M; E) is elliptic and essentially selfadjoint,
and denote the closure of P again with P. Then:

(i) The spectrum spec(P) of P is discrete and consists only of eigenvalues. Each eigenvalue has finite multiplicity.

(ii) There exists a complete orthonormal system (@;)icr of I'12(M; E) consisting of smooth eigensections of P.

Example 3.56. Let M = S' = [0,27]/{0, 27t} with its metric coming from the embedding S' < C =~ R? and the trivial
Spin-structure (see Example 3.5) Py = S' x Zj. The Clifford algebra over C is given by Cly = {a-1+b-e; |a,be C},
which is isomorphic to the product algebra C @ C, the isomorphism given by Cl1 3 a-1+b-e; — (a+ib,a—1ib) €
C®C. An irreducible representation is thus an algebra homomorphism p : Cly — End(C) = C, and its restriction
to Spin(1) = Z, = {+1} is then simply given by multiplication, i.e., k1 : Spin(1) = Z, 3 g — (C3x — gx €
C) € End(Zq). Hence, £S' = P x, £1 = S! x Zy xx, C = S! x C, the trivial vector bundle with fibre C and its
sections are just C-valued functions. Clifford multiplication by e, satisfies e = —1, but 1 = C, so ey is either +i or —i.
Recall that in odd dimensions, we always choose Clifford multiplication such that multiplication by the volume element
acts as the identity. Hence, 1 = wq = i%el = iey, which means ey = —i. It follows that, w.r.t. the coordinate chart
(0,27) > t — el € S, the Dirac operator is given by —i%. For k € Z, we consider the smooth 2rt-periodic function
@r: (0,271) 3 t > et € C. We have

Dy (t) = —i%eikt = —iikel** = kg (t).

Moreover, from Fourier analysis we know that (@y)xez is a complete orthonormal system of LX(S'). By the last theorem,
part (i), we have found all the eigenvalues of D, namely, spec(D) = Z, and each k € Z has multiplicity 1.

Exercise 3.57. Compute the spectrum of the Dirac operator on S' equipped with the nontrivial Spin-structure. Compare
this with the above example.

Next, we are going to compute the spectrum of the Dirac operator on the round sphere (5", ground), 1 = 2.
This was first done by S. Sulanke in her Ph.D.-thesis. We follow an approach taken by C. Bar [Ba96] for which
we will first need the spectrum of the Laplace-Beltrami operator on the sphere, but which has the advantage
that it is elementary.

Theorem 3.58. The eigenvalues of the Laplace-Beltrami operator A on (S", §,0unq) are k(n + k — 1), k € Ny, with

corresponding multiplicity my := (nH,:_l) Zizkk:ll-

Sketch of the proof. We denote by AS" the Laplacian on (S", ground) and by AR""" the one on (R™L, opuir)-

Step 1: One proves that for each f € C*°(R"*1), one has

fisn = 8 (fisn) = N(Nf) — nNf,

where N € V(S") is the outward-pointing unit normal vector field to $”, N : 8" 3 x — x € (T,§")t < R"*1.
One does so by using

R7+1

(A

VR™Y - V'Y — (X, V)N
and
A = —trVdf .
Step 2: Let f € C*(IR"*1) be a homogeneous, harmonic (AR f = 0) polynomial of degree k, k € INy. By the
above formula we have

A% (fisn) = (AR

n+1

Pisn + N(Nf) +nNf =0+k(k—1) +nk =k(n+k—1).

21 A is any selfadjoint extension of A, then Ar € A
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Step 3: Denote by P; the space of homogeneous polynomials of degree k on R"*! and let H; < P be the
subspace of harmonic polynomials. We let & := {f|sx | f € Pt} and 7% := {f|sn | f € Hi}, the sets obtained
by restricting the elements of P resp. Hy to S". Denoting by r the radial coordinate on R"*1, one proves the
decompositions
LI
b= (‘B ”2]ka2]’,

j=0
145
gk = @ %{—2]’ ’
j=0
which shows that dim 7 = dim 2 — dim P_, = ("}*) — ("}5;%) = ("TF 1) nt2=l,

Step 4: Since S" is compact, Py~ P is dense in C°(S") (w.r.t. uniform convergence), which in turn is dense in

L?(S™). Each 2 is a direct sum of Eigenspaces of AS" by the previous two steps. Hence, we have accounted
for all the eigenvalues of AS". O

We will now compute the spectrum of the Dirac operator on the round sphere. Recall the Spin-structure on
(S", ground) that we constructued in Example 3.4 and recall that, because the sphere is simply-connected, it is the
only Spin-structure on S".

On the sphere, we consider for € {£1/2} the connection V¢ : T(M,~M) — T'(M, T*M ® M) defined by

(3.7) V9= Vxo—(X 9.

We also consider the Bochner-Laplacian A¢ associated with V¢.
Lemma 3.59. One has the Weitzenbock formula

(D+0)% =A%+ i(n—l)z.
Proof. Let p € §" and (ey, ..., ex) alocal ONB around p with (Ve;), = Oforall j =1,...,n. At p we obtain

(D+§)’9— Mg = (Z e+ Ve, + C) (Z ej Ve, + Cq)) - Y VeV

i=1 j=1 i=1

n n
D€ VeVep+20Dg+ o+ > (Ve —ei) (Vo9 —Cei - 9)
ij=1 i=1

% " 1 < 1
= =2 VeVept Y, iR (e,)9 +20Dg + 19+ Y, Ve, Ve~ 20D — 1ng.
i=1 1<i<j<n i=1
Since the round sphere has constant sectional curvature 1, the Riemannian curvature tensor satisfies R(X, Y)Z =
(Y, Z)X — (X, Z)Y, which implies by Proposition 3.27 that R*"(X,Y) = 14(Y - X — X - Y). Thus, the above is
equal to

1 1
1 > eivej-(ej-ei—ei-ej) ¢—2(n—1)¢

1<i<j<n
1 1
=-nn—-1e—=-(n—1
4n(n )¢ 4(n )¢

1
= Z(n—l)zgo.
O

Recall from Exercise 23(b) that RV = 0. Together with the fact that S" is simply-connected, this implies
that the spinor bundle £5" can be trivialized by V¢-parallel spinors, i.e., there exist 2"/2] pointwise linearly
independent Killing-spinors 1, ..., (.2 € I'(S",ZS") with Killing number .

Denote the eigenvalues of the Laplace-Beltrami operator A on 5" by A, k € INg, where we enumerate the
eigenvalues according to their finite multiplicity, and let { f }sciv, be a corresponding complete orthogonal sys-

tem of Eigenfunctions of A for L% (S"). Then { fklpl}izﬂl\}'o‘"zlnm is a complete orthogonal system of I';2 (5", £5").



ADVANCED DIFFERENTIAL GEOMETRY II - SPIN GEOMETRY WINTER SEMESTER 2020/21 41

Lemma 3.60. We have

_1)2
(D+0P(figr) = (M + 5L fewn
forallk e No, I =1,... oln2] particular, the eigenvalues of (D + {)? are k(n + k — 1) + (1 =14, k € Ny, with
corresponding multiplicity 2" my.

Proof. By the last lemma, we have

1
(D+ 22 (i) = (A0 (fig) = A (i) + 700 = D2 ity
Since y; is V¢-parallel, it is A%-harmonic, which means

A8 (fitpr) = (Af)r = Afi -
O

Theorem 3.61. The eigenvalues of the Dirac operator D on the round sphere S", n > 2, are + (% + k), k € Ny, with
corresponding multiplicity 21/21 ("TE1),

Proof. We begin our proof with a general remark. If an operator A satisfies A%u = v2u for some number v and
a nonzero vector u, then the vectors v := +vu + Au satisfy

Avt = +vAu + A%u = +vAu + v’u = v(£Au + vu) = tvot,
i.e., if v¥ is nonzero, it is an Eigenvector of A to the eigenvalue +v.

In the case athand, A = D+, v = —{(n—1) and u = fot; for some | € {1,...,21"/21} " Since the first
eigenvalue Ag of A is always 0, we can assume fy = 1. Then

0" = —Cn =1+ (D+ ) = —L(n— 1), — nlpy + Ty = —20(n — 1) # 0.

Thus, —((n — 1) is an eigenvalue of D + { and since we can choose [ freely its multiplicity is at least 2ln/2],
Because the multiplicity of the eigenvalue (1 — 1)2/4 of (D + {)? is exactly 21121 the eigenvalue —((n — 1) of
D + ¢ has multiplicity precisely 21"/2l. Expressed differently, the Dirac operator has the two eigenvalues +75,
each with multiplicity 21"/2],

Let us come to the case u = fxy; with k > 1. Then

v=\/k(n+kl)+i(n1)2=k+n21,

meaning that D also has the eigenvalues —{ + (k + (" =1)2), k € IN. It remains to determine the multiplicities of
these eigenvalues. Recall that we may choose { = —12 or { = 12 and we will start with { = —1/2. We introduce
the notation

v =3 +k, keNo,

n
+ _q_ 1
v =1

2
We already determined the multiplicity of vy, namely m(vy) = 217/2] From the last lemma, we know that
m(v,:r) + m(vfk) = Zln/zjmk.

For { = +1/2 we use the notation

—k, keN.

vg =—5—k, keNo,

n
. =-1+—-+k, kelN
v, +5+k keN,

for which we have analogously to the above m(v, ) = 217/2] and m(v, ) +mv_,) = 217/2) .
We will now show that m(v;") = m(v,) = 212 ("*i~1) for all k € Nj.

30na compact boundaryless manifold, the first eigenvalue of A is always zero, has multiplicity one, and the corresponding eigenspace
is spanned by the constant functions.
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For k = 0 we have already shown this. Let us assume that the statement is true for some k € INy. Then

m(vlil) L T m(vf(kﬂ)) — 22l — m(v)
ol ((HHR\n+2k+1  (n+k-1
B k+1) n+k k
_olnppy (K
2 <k+1> ’

which was to be shown. |

Remark 3.62. Our next goal is an eigenvalue estimate for the Dirac operator. Since the spinor Laplacian is a nonnegative
operator, the Lichnerowicz formula tells us that any eigenvalue A of the Dirac operator on a closed Riemannian manifold

(M, g) satisfies \* > %, where scaly := infyepscal(x). Indeed, let A be an eigenvalue of D with a corresponding
L2-normalized smooth eigenspinor ¢ € T'(M, LM). On the one hand, we have

(D%, 9) = A*(g,9) = A2,
and on the other hand
(ngo, ) = (A, @) + (% scal ¢, (p) > %scalo((p, p) = %scalo .
As the next theorem shows, this inequality is not sharp and we can do better.

Theorem 3.63 (Friedich’s inequality). Let (M",g) be closed Riemannian spin manifold with fixed Spin-structure.
Then every eigenvalue A of the Dirac operator D satisfies

n scalg
A% >
n—1 4

Moreover, if \ = +1, /-1 scaly is an eigenvalue of the Dirac operator with corresponding eigenspinor ¢, then ¢ is a
Killing spinor with Killing number ¥ 1 51/ (nl 0 scaly. In particular, the scalar curvature is constant.

Remark 3.64. Friedrich’s inequality is sharp. Indeed, equality is attained on, e.g., the sphere where we have scaly =
scal =n(n—1).

Proof of Theorem 3.63. Recall the twisted connection V¢ from (3.7). For a spinor ¢ € I (M, ZM) we have

n n
(VEg, Vo) = YUV 0, Vet p) = D (Ve 0+ e @, Ve, 0+ Lej @)
. P2

(<ve 9. Vo) + e 0, Ve, @) + LV e )+ Xei @65 9)

Il
5T - -
iIM= iD= T
L

(<vg ?.Ve9) — 5i¢j Vo) — Lo Vs 0, @) +EX9,9))

Vo, V) —i9,Dg) — {Dg, ¢) + nl*p, 9).
Integrating this yields
(3:8) (V™59,V749) = (Vo, V) —20(Dg, ¢) + nl*(9, 9).
We also have

(D—0)*¢ = (D—{)(Dg —Lg) = D¢ —2[Dg +*De.
Integrating and using the Lichnerowicz formula and Proposition 3.29 we obtain
(D=0, ) = (D*9—2tDp + g, 9) = (Ap, @) + ((ascal +0*)g, ¢) — 2L(De, ¢)

= (Vo, Vo) + ((ascal +0%)g, 9) = 24(Dg, ¢) .

Let A be an eigenvalue of D with corresponding eigenspinor ¢ € I'(M, XM). Set { := */u. From (3.8) we obtain

VA A2 A2 A2
(V9 Vg) = (Vo, V) =2~ (9,9) + 15 (0,9) = (V9, Vo) = (9, 9).

(3.9)
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Combining this with (3.9) yields

<A - A)z (9,9) = (D =419, 9) = (Vo, Vo) + ((i sca1+2§> ¢ fP) - 2%2(% ¢)

n
2 2

A A 1
= (v)\/n(p’ V/\/nq)) + ( _ ) ((p, (P) 4(scal @, (P) .

2
Substracting A>(1 =)/u2(¢, @) from both sides we obtain

n— scaly

Hg,9) = (VVg, V) + L (scal g, 9) > 20, ),

(3.10) A2

which is the desired inequahty
Now assume that A = +1 74/ 7= scalyp. Then we have equality in (3.10), which implies V g =0, ie.,

¢ is a Killing spinor with Killing number 4/n = %4 /m scaly and the scalar curvature is automatically
constant. 0

3.4. Conformal Covariance and Twistors. In this section we will show that the Dirac operator is conformally
covariant, i.e., it transforms nicely w.r.t. a conformal change of the metric. Then, we introduce so called twistor
spinors. The space of twistor spinors can be seen as a conformally invariant extension of the space of Killing
spinors. The final result of this section will be that in the presence of twistor spinors, we can always con-
formally change the metric in such a way that the new metric is Einstein. Roger Penrose introduced twistor
spinors in his work on general relativity, for which he was awarded the Nobel prize in physics in 2020.

Definition 3.65. Let M be a smooth manifold. Two Riemannian metrics g and h on M are called conformal if there
exists a function u € C* (M) such that h = e?"g.

Remark 3.66. A conformal change of the metric leads to a change of lengths of tangent vectors. Angles, on the other
hand, are preserved.

Proposition 3.67. Let (M, g) be an oriented Riemannian manifold with a Spin-structure (P, 7tg). Let u € C*°(M) and
consider the conformal metric h = e**g. Define

Py = : SOM,h) 30y = (v1,...,05) — (" Woy, ..., e*Wo,) e SOM,g),

Q=P mng:=mnp ¥y :=¥Y:Q3q—qgePandmy, := ¢ Lomgo¥. Then, y is an SO(n)-principal fibre
bundle isomorphism, (Q, wg; Spin(n)) is a Spin(n)-principal fibre bundle over M, ¥ : Q — P is a Spin(n)-principal
fibre bundle isomorphism and (Q, 1ty,) is a Spin-structure on (M, h). The situation can be visualized by the commutative
diagram

Q—>

-

SO(M, h) —~ 50

~J

,8) |

TQ

Proof. The map 1 is obviously a smooth bijection preserving fibres over M. Its SO(n)-equivariance is a straight-
forward calculation.

As an abstract Spin(n)-principal fibre bundle, (Q, 77g; Spin(n)) is just (P, 7tp; Spin(n)) and Y is the identity,
so we only need to prove that it is a Spin-structure for (M, h). Let g € Q and a € Spin(n). Then

m(q-a) = ¢~ omgo¥(q-a) = T o mg(q-a) = 7 (mg(q) - M) = ¥ (71g(9) - Aa) = m(q) - Ala).
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Corollary 3.68. In the situation of Proposition 3.67, denote the spinor bundles associated with the Spin-structures
(P, 7tg) over (M, g) and (Q, 7t,) over (M, h) by L¢M and X, M, respectively. Then the principal fibre bundle isomor-
phism ¥, induces a vector bundle isomorphism ¥, : ¥, M — ¥.¢ M which preserves bundle metrics and satisfies

Y (v-0) =" @o. ¥, (0)
forallve TyM, 0 € My, x € M, where - on the left-hand side denotes Clifford multiplication in X, M and in Z¢M on
the right-hand side.

Proof. Since the abstract Spin(n)-bundles of the Spin-structures are identical, the induced isomorphism on the
spinor bundles is simply given by ¥, : £,M > [p,0] — [p,0] € L M. The formula relating the Clifford
multiplications is a straightforward consequence of the definition of Clifford multiplication (cmp. proof of
Proposition 3.11).

Remark 3.69. The following formula relating the Levi-Civita connections V8 and V" of the conformal Riemannian
metrics g resp. h with h = e**g is well-known, see, e.g., [Be87]:

VEY = VY +du(X)Y +du(YV)X —g(X,Y) grad,u forall X,Y e V(M).

Proposition 3.70. In the situation of Proposition 3.67, denote the spinor connections in the spinor bundles Y.e M and
Y, M by V8 and /", respectively. Then we have

v =¢ 1o (V§( - %X.gradgu - ;X(u)) oY, forall XeV(M).
Proof. Lets: M2 U — P = Qbealocal sectionand g os = (ey,...,en) : U— SO(M,g), 08 = (v1,...,0n) :

U — SO(M, h) the associated loca g- resp. --OONBs. Note that we have v; = e""¢; forallj = 1,...,n. Let
we C®(U,Z,) and ¢ = [s,w] € T(U,X;M). Then for every X € I'(U, TM) we have

. 1 —Uu 4 u
Z Vo =[5, X(w)] + 1° Dlei Vile
j=1 j=1

.N»—\

VX(P

= [s, X(w)] + %efu Zn) ej-

j=1

(—X(u)ef”e]- + e7”V’§<ej) c =[5, X(w)] + iefzu (nX(u) + Zn} ej- V};(e]-) )

j=1

= [s, X(w)] + iefzu nX(u) + an e (V%e]’ +du(X)e; + du(e;) X — g(X, ¢j) grad, u)) oy

-
I
-

= [s, X(w)] + iefzu nX(u) + Z e V‘g(ej —nX(u) + grad, u- X — X - grad, u) @

j=1
= [s, X(w)] + ie’zu Z e; —2X-grad,u — 2h(gradg u, X)) @,
so that, using the formula in the above corollary, we obtain
Vig=¥,10%, ([s X(w) (Z eV j—ZX-gradgu—Zh(gradg u,X))~(p>
-y, ! ([s X(w) e et Z ej-V Thuluy . grad, u — ; 2”h(gradg u, X)) Yy 0¢

g, ! (V§( - %X . gradgu - ;X(u)) Y,0¢.

O

Corollary 3.71. Denoting the Dirac operators acting on sections of e M and X, M by Dy and Dy, respectively, we
have

_ntl _ n—1
Dp=e " ”‘I’ulngO<e z ”‘I’u) .
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Proof. By the last proposition, we have

n n B 1 1
Dh = Z U]‘ . vg/ = Z Z)j . Tu 1 <V§] - EU] . gradg u— zv](u)) O‘Fu
j=1 j=1

n n n
_ 1 1
= ey, ! (Z U]-'V‘g].—2Zvj~vj~gradgu—zZvjwj(u))o‘I’u
j=1 j=1 j=1

n
1
— ey, ! (ezu Z e V‘Ej + e’Z”g -grad, u — e*Z”E grad, u) oY,
j=1

=e Uy, ! (Dg + nT—l grad, u) o¥,.
Note that we have for every « € R,
Dg(e" @) = grade™ - ¢ + "Dy = e (a gradu - ¢ + Dgg) .
Setting o = an yields the claimed formula. g

Lemma 3.72. Let (M, g) be a Riemannian spin manifold with a fixed Spin-structure. Consider the vector bundle

kery := U kerp, c TM®XM.
xeM

Then
P: TM®XM - TM®XM

1 n
U®U"—>U®0’+*Ze]'®€j-v-0’,

n; 1

]:

where (e1, ..., en) is an ONB of the appropriate tangent space, is an orthogonal projection with image im P = ker 1.

Proof. Exercise. O

Definition 3.73. Let (M, §) be a Riemannian spin manifold with a fixed Spin-structure. We call T := Po (§®idsym) 0
V : T(M;ZM) — I'(M; TM ® M) the twistor operator . Any spinor ¢ € I'(M; M) with ¢ € ker T is called a
twistor spinor or simply twistor .

Lemma 3.74. We have ¢ € ker T if and only if
Vxo+ %X-Dq) =0 forall XeV(M).

Proof. Let (eq,...,e,) be alocal ONB with g-dual ONB (eq, ..., €,). Then

n n
f1®idgm oVe = i ®idgum (Z 5j®vej§9) = Z e ® Ve ¢

j=1 j=1
so that
n 1 n n 1 n
T(@)=2,6i®@Ve+— > ei®ci-ej-Veg =) ¢®@Vep+— > ¢j®@¢ Dy
j=1 n ij=1 j=1 n i1
- 1
= Zej® <V€/(p+ ej-D<p> =0
j=1 "
if and only if

1
Ve].q0+£ej~Dg0:0 forall j=1,...,n,

which is obviously equivalent to the claim of the lemma. O



46 SEBASTIAN BOLDT
Proposition 3.75. In the situation of Proposition 3.67, denote by T and Ty, the twistor operators associated with the
spinor bundles .o M and X, M, respectively. Then we have

Ti(p) = idrp @Y, (e 2 Tg(e 2¥, 09)) forall ¢eT(M;E,M).
In particular, ¢ € T(M; X, M) is a twistor spinor if and only if e 3¥, 0 ¢ € T(M; Y.¢M) is a twistor spinor.
Proof. Straightforward computation using Proposition 3.70, Corollary 3.71 and Lemma 3.74. O

Proposition 3.76. Let (M, g) be a Riemannian spin manifold with a fixed Spin-structure. If ¢ € T(M; ZM) is a twistor,
then

VxDg = z(n”_ % (Z(Zcill)X—ric(X)> @ forall XeV(M).

Proof. Exercise. g
Proposition 3.77. Let (M, g) be a Riemannian spin manifold with a fixed Spin-structure. Let K : TM 3 X —
! ( scal ric(X)) € TM. Consider the complex vector bundle S := XM ® XM over M with the covariant

=2 20—y
s._( Vx Ix
V= (gK(X) %X)'

derivative
Then, for any twistor ¢ € T(M; M) we have V° (D(P(p) = 0. Conversely, if (f;) e T(M; S) satisfies V° (i) =0, then ¢
is a twistor and P = Dg.

Proof. If ¢ € T(M;XM) is a twistor, then Lemma 3.74 and the last proposition imply that V° 64 <P) =0.
Now let (i) € I (M; S) be V°-parallel. By definition of V°, we have

Vxo+ %X =0
for all X € V(M). Multiplying this equation by X we obtain
XV~ IXIPp =0.
Choosing X = ¢y, ..., ¢, for alocal ONB and summing the resulting equations yields
De—-9¢ =0,
which also shows that ¢ is a twistor. O
Remark 3.78. By the last proposition, twistor spinors are in 1:1-correspondence with V-parallel sections of the bundle

S. Since parallel sections on a connected manifold are uniquely determined by their value at one point, we conclude
that a twistor spinor ¢ is uniquely determined by (¢(p), De(p)) for an arbitrary p € M and that the twistor space has

n
dimension at most 2 - 2121,

Theorem 3.79. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. If ¢ € T(M; ZM) is
a nontrivial twistor, then nullg := {p € M | ¢(p) = 0} is a discrete set.

Proof. Denote £, := (¢, ¢), the squared length function of the twistor ¢ and let p € nullg. Let X,Y € V(M) be
any two vector fields. Firstly, we have
X(lp)(p) = Vx@, ¢p +{9, Vx)p =0,

so that p is a critical point of .
Secondly,

Y(X(£g))(p) = 20YR(Vxg,9))p = —2YR(X Do, gy = —= (R(Ty(X - Dg), gy + R(X - Do, Vgy)

o
2 2
= WX Dy, Y Dg)y = =3(X,Y),| Dol
Hence, the hessian of /, at p is given by
2
Hess, £y (X,Y) = V(dly)(X,Y)p = Vx(dlp)(Y)p = X(Y(€y))p —d(€y)p(VxYp) = ﬁg(X, Y)p||D(pH%.

In case Dg(p) # 0, p is a nondegenerate critical point £, and thus an isolated zero point. In case D¢(p) = 0 we
have ¢ = 0 by the last remark, which contradicts the assumption of the theorem.
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Lemma 3.80. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. If ¢ € T(M; ZM) isa
twistor, the functions

Cyp:=R(Dg, ¢),
n
Qy = |@*[Dg|* — C5 — > (R(Dg,ej- 9)),
=1
where (e1,...,en) is an ONB, are constant.

Proof. Exercise. O

Theorem 3.81. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. If ¢ € T(M; M) is
a twistor with | @[> = 1, then (M, ) is an Einstein manifold with scalar curvature

(C2+Qyp)-

scal =

n
4(n—1)

Proof. Since ,¢ = 1, we have

2 2
0=Xly =20(Vxop, @) = —E§R<X~D<p, Q) = ;%<D(p,X Q).
This automatically implies by Proposition 3.76 that
X(D¢, Do) = 2¥VxD¢, D) = n(K(X) - ¢, Dg) = 0,

that is, [D¢|? is constant.
Now, for any vector fields X, Y we have

58(K(X),Y) = Zg(K(X), Y)gl? = ZRK(X) -9, Y - 9) = R(VxD@,Y - ¢)

XR(De,Y - @) —R(De,Vx(Y-¢))
—R(De,VxY - -9)—R(Dg,Y - Vye)

1 1
~R(Dg,Y-X-Dg) = —g(X, Y)|Dg|?,

from which we conclude that K(X) = ﬁ (2 (jfill) X - ric(X)) is a constant multiple of the identity, i.e., (M, g)
is an Einstein manifold.

Regarding the sectional curvature, we compute

N 2 $(K(X), X)
C2 +Qy = lo|?IDe|* = > (R(D¢,e;-9))* =1-|D 2_ 1 gK(X), X)
7+ Qe = 191100 = 3R,y =1 [Dgl = 5 E g 5y
_77172 1 scal  scal) "l
- 2n-2\2n—-1) n ) 4n-1)" "
where we have used that for an Einstein manifold with Ric = Ag we have scal = nA. O

Corollary 3.82. Let (M, g) be a connected Riemannian spin manifold with a fixed Spin-structure. Assume there exists
a nontrivial twistor ¢ € T(M;ZM). On N := M\nullg, set h := —=g. Then (N, h) is an Einstein manifold with

ol
nonnegative scalar curvature

scaly, = ﬁ(Cé +Qp)-

Proof. Since nullg is a discrete set, M\nullg is indeed a manifold. The twistor ¢ is obviously also a twistor on
(N, g|n)- By Proposition 3.75, with e = 1/|44, we have that e/2¥, 1 0 ¢ € T(N, X, N) is a twistor with norm

M _ 1
|29, o g2 = e¥; o 9] = WuqouZ =1,

so that the claim follows from the last Theorem. O

Remark 3.83. One can show that if % (Cf,, +Qg) > 0then1/jg|¥;; ! o @ is the sum of two real killing spinors whereas
if%(Cé +Qy) =0, then 1/jg|¥;; ! o @ is parallel.
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4. OUTLOOK: SpinC— AND GENERALIZED DIRAC OPERATORS

In this course, we have treated the Spin-Dirac operator, also known as the fundamental or Atiyah-Singer-
Dirac operator. While this is undoubtedly the most important Dirac operator, it is by far not the only one.

First we want to discuss the Spin©-Dirac operator which is motivated by physics. As a starting point we
take Theorem 3.13 which asserted that there is a unique spinor connection V on XM satisfying the Leibniz
rule (3.1) w.r.t. Clifford multiplication. While uniqueness is often times a desirable property, it hinders us if we
would like to introduce a magnetic field into the picture, i.e., a certain imaginary valued object. To do this, we
go back to the beginning and consider the spin group and its complex fundamental representation, which was
given by the restriction of an irreducible representation of C¢,, to Spin(n),

Spin(n) < C¢, < C¢, — End(%,).

The group Spin© () is the subgroup of C/#* generated by Spin(n) and S'. Since Spin(n) n S' = {+1} we can
identify Spin® (1) with Spin() x 72 S' = Spin(n) x S!/ ~, where [g,z] ~ [~g, —z]. The group Spin© (1) is now
a double cover for SO(n) x U(1) (U(1) ~ S'), where the covering map is given by

AxL: Spinc(n) 5 (g, 2] — (A(g), £(z)) = (A(g),2%) € SO(n) x U(1).
We again define the fundamental representation of SpinC (n) by the restriction of an irreducible representation
of C/,,

Ky : Spin®(n) < Cl, — End(Z,),

and the statement in Propopsition 1.49 holds verbatim in this case too.

Next we want to define SpinC—structures on an oriented Riemannian manifold (M, g). To do this, we need
an additional datum, a U(1)-principal fibre bundle Q over M. This object is in general not canonical, i.e., this
represents a degree of freedom.

A SpinC-structure on an oriented Riemannian manifold (M, g) is a pair (P, 7r) consiting of a Spin®(n)-
principal fibre bundle P over M and a A x {-equivariant map 77 : P — SO(M, g) x Q, that is, the following
diagram is commutative,

P x Spin®(n)

’ p
\L TTXAXY L 7\
SO(M, g) x Q xSO(n) x U(I) —=SOM) x Q ——— M
7SO (n) X TQ
Similarly to the spin case, the existence of Spin-structures does not depend on the geometry of the manifold,
but only on its topology.
The spinor bundle is now defined as in the spin case,

M :=P x, L.

We also define Clifford multiplication analogously to the spin case and all statements made there hold in the
the Spin® case too.

In order to define the Dirac operator, we need a spinor connection on £M. Contrary to the spin situation,
there is no unique lift of the Levi-Civita V< connection to the spin bundle. Rather, we have to choose a connec-
tion V! in the complex line bundle L := Q x,, C first (here, p; : U(1) — GI(C) is the standard representation of
U(1), and L is the complex vector bundle associated with Q and p;). Assocaited to the pair (VEC, VL) is now
a unique connection V in the spinor bundle M, which is metric and satisfies (3.1). The Spin®-Dirac operator
D is defined analogously to the usual Dirac operator, i.e., as the superposition of the spinor connection and
Clifford multiplication.

For many of the theorems that we have seen in this course there are analogues for the Spin®-Dirac operator.
For example, the Lichnerowicz formula reads

D> =A+ }Lscal—i—%ﬂ.
Here, () is the curvature of the line bundle L, which, since L is 1-dimensional, is an alternating tensor (2 :
TM®TM — iR, and Clifford multiplication can be extended to alternating tensors.

One point that makes the Spin©-Dirac operator attractive is that the class of Spin® manifolds is much larger

than the class of spin manifolds and that it contains the latter. More precisely,
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e every spin manifold (M, g) with a fixed Spin-structure P has an associated canonical Spin©-structure
whose Dirac operator can be canonically and isometrically identified with the Spin-Dirac operator we
started with.

e Every (almost) complex manifold carries a canonical Spin®-structure.

The last subject we want to touch briefly is that of generalized Dirac operators. The question we ask our-
selves is: Can we abstract the Spin-Dirac operator to create a framework for operators which behave like the
Spin-Dirac operator? One way to do this is via so-called Dirac bundles (see [LM89]; but note that there are
even more general notions of Dirac operators). Given a Riemannian manifold (M, g), a Dirac bundle is a triple
(S, u, V%) where

e Sisavector bundle over M equipped with a bundle metric,
e 1:TM®S3X®0 — u(X®0c)=: X-0 €S isa vector bundle homomorphism satisfying the Clifford
relations

X- (Yo )+Y - (X-0)=-29(X,Y)o forall X,YeTyM,0ce€Sy,xeM,
and which is orthogonal w.r.t. the bundle metric of S, i.e.,
X-0,X-1)={0,T)

forall X e TyM with |X|| =1,0€ Sy, x € M,
e V% is a metric covariant derivative in S satisfying

Vi (Y-9)=VEY - 9+Y- Ve forall X,Y e V(M),peTl(M,S).

Given a Dirac bundle (S, 1, V°®) over a Riemannian manifold (M, g), the associated (generalized) Dirac
operator is defined as

D:T(M,S) L5 T(M, T*M®S) ‘8% r(M, TM®S) 15 T(M, ),

and is given locally by the familiar formula

n
S
Dg = Ze]wve],q).
j=1
Having made this definition, the question is whether there are any generalized Dirac operators. Certainly,
every Spin-Dirac and Spin®-Dirac operator is a generalized Dirac operator. But are there any others?

©) manifold

One example is given by twisted Dirac operators. Suppose you are given a Riemannian Spin(
(M, g) with fixed Spin(C)-structure. Take any vector bundle E over M and equip it with a bundle metric and a
metric connection VE. We define

¢ S:=YXMQE,
e Clifford multiplication #° on S is just Clifford multiplication on the first factor, i.e.,

X (e®71):=X0)®T,
e V° as the canonical tensor product connection, i.e.,
Vi(e®p) = V¥Vo@p+ 9@ Vip.

Routine calculations show that (S, #°, V®) is a Dirac bundle. The associated generalized Dirac operator is
called the twisted Dirac operator with coefficients in E.
Generalized Dirac operators enjoy many of properties of the Spin-Dirac operator that we proved in this

course, e.g.,

e D(fp)=gradf- ¢+ fD(g) forall fe C*(M), 9 T(M,S),

o Lichnerowicz fomulue

D*=A5+%
where Z is a certain function given in terms of the curvature tensor of S.

Often times, by choosing the right Dirac bundle, it is possible to connect the geometry with the topology of
the underlying manifold through the associated Lichnerowicz formula and index theory (see [LM89]).
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