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0. MOTIVATION

Let T be a free particle in R3 with spin 1{2. We want to study its motion in special relativity. If we denote its
(relativistic) mass, Energy and momentum by m, E and p, respectively, then we have the relation

E “
b

c2 p2 `m2c4 ,(0.1)

where c denotes the speed of light.
Now we want to additionally study T quantum mechanically which means we have to describe T by a wave

function ψ “ ψT : RˆR3 Q pt, xq ÞÑ ψpt, xq P C. Here, the associated function pt, xq ÞÑ |ψpt, xq|2 P R is the
density of the probability law that the particle T can be found at x at time t. The energy and momentum are
no longer scalars associated with T but become unbounded operators acting on appropriate Hilbert spaces of
wave functions,

Eψ “ ih
Bψ

Bt
,

pψ “ ´ih grad ψ .
(0.2)

If one wants to combine the relativistic equation (0.1) with the quantum mechanical description (0.2), one
concludes that wave functions must (formally) satisfy the equation

ih
Bψ

Bt
“
a

c2h2∆`m2c4ψ ,

where ∆ denotes the Laplacian ∆ “ ´
ř3

i“1 B
2{Bx2

i . We thus face the problem of finding the square root of a second order
differential operator. Setting all constants to 1 (as mathematicians like to do), we specifically want to find the
square root D “

?
∆ of the Laplacian. There are many ways in which this can be done, e.g., via the functional
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2 SEBASTIAN BOLDT

calculus, but for many reasons it is desirable that D be a differential operator itself. This means of course that
D must be of first order. We take the ansatz

D “

3
ÿ

i“1

γi
B

Bxi
.

The requirement D2 “ ∆ holds if and only if

γ2
1 “ γ2

2 “ γ2
3 “ ´1 and γiγj ` γjγi “ 0 , for i ‰ j .

These equations do not posses a solution in C. They do, however, if we allow the γi to be elements of some
algebra. The smallest algebra that contains elements satisfying these relations is the one of complex 2ˆ 2-
matrices. Specifically, the matrices

γ1 “

ˆ

i 0
o ´i

˙

, γ2 “

ˆ

0 ´1
1 0

˙

, γ3 “

ˆ

0 i
i 0

˙

do satisfy above equations. Now D becomes an operator acting on C2-valued functions, i.e. elements of
C1pR3, C2q, and the equation D2 “ ∆ has to be understood component-wise.

This discussion was specific to R3. In the following lecture, we will learn how to define the Dirac operator
D on (almost) any Riemannian manifold and study its basic properties.

1. BASICS

1.1. Lie groups.

Definition 1.1. A Lie group is a C8-manifold G which is also a group with the property that

Gˆ G Q pa, bq ÞÑ a ¨ b P G

G Q a ÞÑ a´1 P G

are smooth.

Example 1.2. (i) pRn,`q, pCn,`q, pCzt0u “ C˚, ¨q.
(ii) pS1 “ teit | t P Ru Ď C˚, ¨q.

(iii) If G, H are Lie groups, then Gˆ H is a Lie group with the product manifold and product group structure.
(iv) pGlpn; Cq, ¨q since Glpn; Cq is an open subset of Cn2

– R2n2
and matrix multiplication and inversion are polyno-

mials in the entries of matrices, hence smooth. More generally, pGlpn; Hq, ¨q, where H is the field of quaternions.
(v) Any subgroup / submanifold of any Lie group G which also happens to be a submanifold / subgroup. For G “

Glpn; Cq or G “ Glpn; Hq the most prominent examples are: Glpn; Rq, Slpn; Cq, Slpn; Rq, Upnq, Opnq, Sppnq,
SUpnq, SOpnq. The groups Opnq, Upnq and Sppnq are special cases of the following more general construction:
Let K be either R, C or H and s : Kn ˆKn Ñ K a bi-/sesquilinear, nondegenerate (skew-)symmetric / (skew-
)hermitian form. Then Opsq :“ tA P Mpn, n; Kq | spAX, AYq “ spX, Yq for all X, Y P Knu is a Lie group.

(vi) The Heisenberg group

H2n`1 :“

$

&

%

γpx, y, zq :“

¨

˝

1 xt z
0 En y
0 0 1

˛

‚ | x, y P Rn, z P R

,

.

-

Ď Glpn; Rq .

As a manifold, H2n`1 is diffeomorphic to R2n`1. Group product and inversion are given by

γpx, y, zq ¨ γpu, v, wq “ γpx` u, y` v, z`w` xx, vyeuclq ,

γpx, y, zq´1 “ γp´x,´y,´z` xx, yyeuclq .

Definition 1.3. (i) For a P G the map La : G Q b ÞÑ a ¨ b P G is called left-translation by a . La is a diffeomorphism
with inverse L´1

a “ La´1 . Analogously, Ra : G Q b ÞÑ b ¨ a P G right-translation by a .
(ii) A vector field X P VpGq is called left-invariant :ô

X ˝ La “ dpLaq ˝ X @a P G ,

i.e., Xa¨b “ dpLaqbXb for all a, b P G. In other words, X is La-related to itself for all a P G.
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Remark 1.4. The space of left-invariant vector fields on G is canonically identified with TeG, the tangent space to G at
the identity:

TeG Q X ÞÑ pvector field rX given by rXa :“ dpLaqeXeq

TeG Q Ye ÞÑY P tleft-invariant vector fields on Gu

These two maps are vector space isomorphisms and inverses of each other.

Lemma 1.5. If X, Y are left-invariant vector fields on G, then rX, Ys is again a left-invariant vector field.

Proof. Let a P G. Then X is La-related to itself, and so is Y. Hence, rX, Ys is La-related to itself. �

Corollary and Definition 1.6. (i) A Lie algebra over R is a real vector space V together with a bilinear map r¨, ¨s :
V ˆ V Ñ V which is alternating and satisfies the Jacobi identity, i.e., rX, Ys “ ´rY, Xs and rX, rY, Zss `
rY, rZ, Xss ` rZ, rX, Yss “ 0 for all X, Y, Z P V.

(ii) The vector space g of left-invariant vector fields on G is by Lemma 1.5 a Lie algebra over R.

Remark 1.7. The tangent space TeG is canonically identified with g by Remark 1.4. This means that TeG inherits a Lie
algebra structure from g!

Explicitely: If X, Y P TeG, then rX, Ys :“ rleft-inv. ext. rX of X, left-inv. ext. rY of Yse.
One often encouters the notation g “ TeG, which should always be understood in the above sense.

Lemma 1.8. Let X be a left-invariant vector field on G and Φt
X its flow. If Φt

Xpeq is defined for all t P p´ε, εq, then so is
Φt

Xpaq, and we have

Φt
Xpaq “ a ¨Φt

Xpeq .

Proof. We need to check that t ÞÑ a ¨Φt
Xpeq is an integral curve of X starting in a. We have

d
dt

`

a ¨Φt
Xpeq

˘

“
d
dt

`

LaΦt
Xpeq

˘

q “ dpLaqΦt
Xpeq

d
dt

Φt
Xpeq

“ dpLaqΦt
Xpeq

XΦt
Xpeq

“ Xa¨Φt
Xpeq

,

where the second equality follows from the chain rule and the last one from X being left-invariant. �

Corollary 1.9. Any left-invariant vector field X on G is complete , i.e., Φt
Xpaq is defined for all t P R and all a P G.

Proof. Let ε ą 0 be as in Lemma 1.8 and let a P G. Suppose that

t0 :“ suptt |Φ¨Xpaq is defined at least until tu ă 8 .

Let b :“ Φt0´ε{2

X paq. By the previous lemma, Φt
Xpbq is defined at least for t P p´ε, t0` ε{2q, which is a contradiction

to our assumption t0 ă 8. �

Definition 1.10. (i) A Lie group homomorphism f : G Ñ H is a smooth group homomorphism between Lie groups
G and H.

(ii) A (real / quaternionic) representation is a Lie group homomorhism f : G Ñ GlpVq, where V is a complex (real /
quaternionic) vector space.

(iii) A one-parameter subgroup in G is a Lie group homomorphism α : pR,`q Ñ G, i.e., α is smooth and satisfies
αps` tq “ αpsq ¨ αptq for all s, t P R.

Proposition 1.11. The map t1-parameter subgroups in Gu Q α ÞÑ 9αp0q P TeG is a bijection.

Proof. Define

Λ : TeG – g Q X ÞÑ pt ÞÑ Φt
Xpeqq P t1-parameter subgroups in Gu

TeG Q 9αp0q ÞÑα P t1-parameter subgroups in Gu : Ψ .

‚ Ψ ˝Λ “ id: d
dt |t“0Φt

Xpeq “ Xe.
‚ Λ ˝ Ψ “ id: We have to show that α is indeed the integral curve of the left-invariant vector field

associated with 9αp0q:

9αptq “
d
ds |s“0

αpt` sq “
d
ds |s“0

αptq ¨ αpsq “ dpLαptqqe 9αp0q

“ pleft-invariant vector field associated with 9αp0qqαptq .
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�

Notation 1.12. The Lie exponential map e¨ : g Ñ G maps X P TeG – g to etX :“ Φt
Xpeq. Thus, t ÞÑ etX is the

1-parameter subgroup in G associated with X as in Proposition 1.11.

Proposition 1.13. If X, Y P g, then

rX, Yse “
d
dt |t“0

d
ds |s“0

etXesXe´tX .

Note that for fixed t “ t0, s ÞÑ etXesXe´tX is a curve in G starting in e P G, hence t ÞÑ d
ds |s“0etXesXe´tX is a

curve in TeG.

Proof. Denote by L the Lie derivative. By its definition, we have

rX, Yse “ pLXYqe “
d
dt |t“0

d
`

Φ´t
X
˘

Φt
Xpeq

YΦt
Xpeq

“
d
dt |t“0

d
ds |s“0

Φ´t
X ˝Φs

Y ˝Φt
Xpeq .

By Lemma 1.8 we have

Φ´t
X pΦ

s
YpΦ

t
Xpeqqq “ Φ´t

X pΦ
s
Ype

tXqq “ Φ´t
X pΦ

s
Ype

tX ¨ eqq “ Φ´t
X pe

tX ¨Φs
Ypeqq

“ etX ¨Φ´t
X pe

sYq “ etX ¨ esY ¨ e´tX .

�

Example 1.14. Let G “ Glpn; Cq Ď Mpn, n; Cq, e “ En the nˆ n identity matrix, C P TeG “ Mpn, n; Cq, A P G.
Note that for small t, detpEn ` tCq ‰ 0, i.e., En ` tC P Glpn; Cq.

dpLAqeC “
d
dt |t“0

LApEn ` tCq “ AC .

Hence, the left-invariant vector field XC associated with C is given by XC
A “ A ¨ C .

Next, we compute the Lie bracket of C, D P TeG “ Mpn, n; Cq. We have

rC, Ds “ rXC, XDse “ dpXDqeXC
e ´ dpXCqeXD

e “
d
dt |t“0

XDpEn ` tCq ´
d
dt |t“0

XCpEn ` tDq

“ C ¨D´D ¨ C ,

where we have interpreted XC and XD as maps from the open set Glpn; Cq Ď Mpn, n; Cq to Mpn, n; Cq – R2n2
, hence

their Lie bracket is given by the difference of their directional derivatives with respect to each other.
At last, we compute the Lie exponential map of G. For C P TeG, the matrix exponential map t ÞÑ expptCq “ En `

tC` 1{2ptCq2 ` . . . is a 1-parameter subgroup in G (exppps` tqCq “ exppsCq ¨ expptCq) with d{dt|t“0 expptCq “ C, so
it must be the one associated with C:

etC “ expptCq .

The above formulae for rC, Ds and etC also hold for any Lie subgroup of G!

Lemma 1.15. Let Φ : G Ñ H be a Lie group homomorphism.
(i) ΦpetXq “ etdΦeX for all t P R, X P TeG.

(ii) rdΦeX, dΦeYs “ dΦerX, Ys, hence dΦeTeG Ñ TeG is a Lie algebra homomorphism , i.e., a vector space homo-
morphism which preserves Lie brackets.

Proof. (i) We are done when we show that the left hand side is indeed a 1-parameter subgroup in H with
the correct initial vector: Φpeps`tqXq “ ΦpesX ¨ etXq “ ΦpesXq ¨ΦpetXq with initial vector d

dt |t“0ΦpetXq “

dΦep
d
dt |t“0etXq “ dΦeX.

(ii)

rdΦeX, dΦeYs “
d
dt |t“0

d
ds |s“0

etdΦeXesdΦeXe´tdΦeX piq
“

d
dt |t“0

d
ds |s“0

ΦpetXqΦpesYqΦpe´tXq

“
d
dt |t“0

dΦe

ˆ

d
ds |s“0

etXesYe´tX
˙

“ dΦe

ˆ

d
dt |t“0

d
ds |s“0

etXesYe´tX
˙

“ dΦeprX, Ysq ,
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where we have used Proposition 1.13 in the first and last step.
�

Definition 1.16. (i) For a P G let Ia :“ La ˝ R´1
a : G Q b ÞÑ a ¨ b ¨ a´1 P G be conjugation by a.

(ii) For a P G let Ada :“ dpIaqe : g – TeG Ñ TeG – g.
(iii) For X P g let adX :“ rX, ¨s : g Q Y ÞÑ rX, Ys P g.

Remark 1.17. (i) Ia is a Lie group automorphism , i.e., a diffeomorphism and a group automorphism. Moreover,
AutpGq is a Lie group and G Q a ÞÑ Ia P AutpGq is a Lie group homomorphism.

(ii) Ada : g Ñ g is by Lemma 1.15(ii) a Lie algebra automorphism . Moreoever, Ad : G Q a ÞÑ Ada P Autpgq Ď Glpgq
is a Lie group homomorphism, where Glpgq is the group of linear transformations of the vector space(!) g.

(iii) By the Jacobi-identity, we have adXrY, Zs “ rrX, Ys, Zs ` rY, rX, Zss “ radX Y, Zs ` rY, adX Zs. That is, adX :
g Ñ g is a Lie algebra derivation , i.e., a vector space endomorphism ϕ P Endpgq with ϕrX, Ys “ rϕX, Ys `
rX, ϕYs. Moreover, ad : g Q X ÞÑ adX P Derpgq is a Lie algebra homomorphism, where the Lie bracket on Derpgq is
given by rϕ, ψs “ ϕ ˝ ψ´ ψ ˝ ϕ and adrX,Ys “ adX ˝ adY ´ adY ˝ adX “ radX , adYs.

Lemma 1.18. Let X, Y P g – TeG. Then
d
dt |t“0

AdetX “ adX .

Proof.

d
dt |t“0

AdetX Y “
d
dt |t“0

d
ds |s“0

IetX pesYq “
d
dt |t“0

d
ds |s“0

etX ¨ esY ¨ e´tX 1.13
“ rX, Ys “ adX Y .

�

Corollary 1.19. Apply Lemma 1.15(i) to Φ :“ Ad : G Ñ Autpgq Ď Glpgq:

AdetX “ etdAde X “ et adX “ exppt adXq “ id`t adx `t2{2t2 ad2
X ` . . .

and
dpAdqe “ ad .

Summary .

g
ad //

e¨

��

Derpgq

e¨“exp
��

Ď // Endpgq

e¨“exp
��

G Ad // Autpgq
Ď // Glpgq

1.2. Clifford Algebras.

Definition 1.20. Let K be a field with char K ‰ 2, V a finite-dimensional K-vector space and q a quadratic form on V.
We call pC, ιq a Clifford algebra for pV, qq if

(i) C is an associative, unital K-algebra.
(ii) ι : V Ñ C is a K-linear map with

ιpvq2 “ ´qpvq ¨ 1C for all v P V .

(iii) If A is any associative, unital K-Algebra for which there is a map j : V Ñ A with

(1.1) jpvq2 “ ´qpvq ¨ 1A for all v P V ,

then there exists a unique K-algebra homomorphism rj : C Ñ A such that

C
rj

��
V

ι

??

j // A
is commutative.
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Proposition 1.21. For any pV, qq there exists a Clifford algebra pC, ιq unique up to canonical isomorphism. Moreover,
ι is injective and t1Cu Y ιpVq Ď C generates C.

Proof. Let us first show uniqueness of the Clifford algebra. This is a standard argument using the universal
property Definition 1.20(iii). Suppose we are given two Clifford algebras pC, ιq and pC1, ι1q. By definition, there
exist unique maps rι : C1 Ñ C with rι ˝ ι1 “ ι and rι1 : C Ñ C1 with rι1 ˝ ι “ ι1. The map rι ˝ rι1 : C Ñ C satisfies
rι ˝ rι1 ˝ ι “ rι ˝ ι1 “ ι. Using Definition 1.20(iii) a third time, now with A “ C and j “ ι, we see that idC ˝ι “ ι. By
uniqueness, we haverι ˝rι1 “ idC. Analogously, rι1 ˝rι “ idC1 . Hence, pC, ιq is unique up to canonical isomorphism.

Next, we show that pC, ιq actually exists. Let T pVq “
À8

k“0 Vb
k

be the tensor algebra of V. Define I as the
two-sided ideal generated by the set

tvb v` qpvq | v P Vu

and C :“ T pVq{I . Let π : T pVq Ñ C be the canonical projection and define ι : V ãÑ T pVq π
Ñ C, the

concatenation of the injection V ãÑ T pVq and the projection π.
Since I is a two-sided ideal, C inherits an associative, unital algebra structure from T pVq. Furthermore, by

the very definition of C and ι, we have ιpvq2 “ ´qpvq ¨ 1C for all v P V.
Let now be j : V Ñ A be linear map into an associative, unital K-algebra with (1.1). By the universal

property of the tensor algebra, j extends uniquely to a K-algebra homomorphism j : T pVq Ñ A. Since j
satisfies (1.1), we have I Ď ker j. Hence, j descends uniquely to a map rj : C Ñ A satisfying rj ˝ ι “ j.

To show that ι is injective, it suffices to prove that V X I “ t0u. This is a simple argument by induction
over the degree of tensors. Finally, since T pVq is generated by V and 1 P K “ Vb

0
, C is generated by ιpVq and

1C. �

Remark 1.22. (i) We will from now on denote the unique Clifford algebra associated with pV, qq by pC`pV, qq, ιq and
view V as a subspace of C`pV, qq by virtue of ι. Moreoever, we will write 1 P C`pV, qq instead of 1C`pV,qq.

(ii) If b : V ˆV P pv, wq ÞÑ 1{2pqpv` wq ´ qpvq ´ qpwqq P K denotes the symmetric bilinear form associated with q,
we have

v ¨w`w ¨ v “ ´2bpv, wq ¨ 1 for all v, w P V

in C`pV, qq. In particular, if V has K-dimension n and pe1, . . . , enq is a basis of V that diagonalizes b, then

e2
i “ ´qpeiq for all i “ 1, . . . , n and ei ¨ ej ` ej ¨ ei “ 0 for all 1 ď i ‰ j ď n .

Definition 1.20(iii) says that C`pV, qq is the smallest associative, unital algebra containing V and satisfying these
relations.

(iii) Let V, W be K-vector spaces, equipped with quadratic forms q and r, respectively. Applying Definition 1.20(iii)
to ιW ˝ f for a K-linear map f : V Ñ W which satisfies f ˚r “ q (i.e. rp f pvqq “ qpvq for all v P V) shows
that f extends uniquely to an algebra homomorphism rf : C`pV, qq Ñ C`pW, rq. The uniqueness assertion in
Definition 1.20(iii) also implies that, given another linear map g : W Ñ U into a vector space U with a quadratic
form s which satisfies g˚s “ r, we have Ćg ˝ f “ rg ˝ rf .

Definition 1.23. Let V be a K-vector space and q : V Ñ K a quadratic form with associated symmetric bilinear form
b : V ˆV Ñ K.

(i) Denote by α P AutpC`pV, qqq the unique continuation of ´ idV P Opbq. Explicitely, α : C`pV, qq Ñ C`pV, qq is the
unique K-linear map which satisfies

αpv1 ¨ v2 ¨ ¨ ¨ vkq “ αpv1q ¨ αpv2q ¨ ¨ ¨ αpvkq “ p´1qkv1 ¨ v2 ¨ ¨ ¨ vk for all k P N0, v1, . . . , vk P V .

In particular, α2 “ id.
(ii) For i “ 0, 1 define C`pV, qqi :“

 

x P C`pV, qq | αpxq “ p´1qix
(

, i.e., C`pV, qqi is the p´1qi-eigenspace of α, and

C`pV, qq “ C`pV, qq0 ‘ C`pV, qq1 .

Multiplication in C`pV, qq satisfies

C`pV, qqi ¨ C`pV, qqj Ď C`pV, qqi`j mod 2 .
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Remark 1.24. (i) A K-algebra A with a splitting A “ A0 ‘A1 such that multiplication in A obeys the rule Ai ¨

Aj Ď Ai`j is called a Z2-graded algebra . We call A0 the even part and A1 the odd part of A and we call
deg x :“ i the degree of x P Ai . Note that A0 is always a subalgebra of A.

(ii) Given two Z2-graded K-algebras A and B, their tensor product AbB is the K-algebra whose underlying K-vector
space is the vector space tensor product AbB with multiplication ab b ¨ a1b b1 “ a ¨ a1b b ¨ b1. Unfortunately, Ab
B is in general not a Z2-graded algebra. To produce a Z2-graded algebra, we use the Z2-graded tensor product ApbB
whose underlying vector space is again the vector space tensor product Ab B and whose multiplication is defined
on pure tensors of pure degree by

ab b ¨ a1 b b1 “ p´1qdeg b¨deg a1a ¨ a1 b b ¨ b1 .(1.2)

The Z2-grading of ApbB is given by

pApbBq0 “ A0 b B0 `A1 b B1 ,

pApbBq1 “ A0 b B1 `A1 b B0 .

Proposition 1.25. Let V be a K-vector space with quadratic form q and associated symmetric bilinear form b. Assume
we are given a b-orthogonal splitting V “ V1‘V2, i.e., bpv1, v2q “ 0 for all v1 P V1, v2 P V2 (equivalently qpv1` v2q “

qpv1q ` qpv2q). Then there is a natural isomorphism of Clifford algebras

C`pV, qq Ñ C`pV1, q1qpbC`pV2, q2q ,

where qi :“ q|Vi
: Vi Ñ K is the restriction of q to Vi.

Proof. Define j : V “ V1 ‘ V2 Q v1 ` v2 ÞÑ v1 b 1 ` 1 b v2 P C`pV1, q1qpbC`pV2, q2q. Then, we have for all
v1 ` v2 P V1 ‘V2 by (1.2)

jpv1 ` v2q
2 “ pv1 b 1` 1b v2q

2 “ v2
1 b 1` 1b v2 ` v1 b v2 ´ v1 b v2 “ ´qpv1q ¨ 1b 1´ qpv2q1b 1

“ ´qpv1 ` v2q1b 1 .

Hence, by Definition 1.20(iii), j extends uniquely to an algebra homomorphism rj : C`pV, qq Ñ C`pV1, q1qpbC`pV2, q2q.
To see that rj is bijective, we construct the inverse homomorphism. Let gi : Vi Ñ C`pV, qq, i “ 1, 2, be the concate-
nation of the inclusion Vi ãÑ V and the inclusion V ãÑ C`pV, qq. Then gi extends to an algebra homomorphism
rgi : C`pVi, qiq Ñ C`pV, qq. The map g : C`pV1, q1qpbC`pV2, q2q Q xb y ÞÑ rg1pxq ¨ rg2pyq P C`pV, qq is the inverse of rj.
It suffices to check this on pure tensors of vectors from V1 and V2, as those generate C`pV1, q1qpbC`pV2, q2q and
hence determine g uniquely.

�

Definition 1.26. Let V be a K-vector space and q a quadratic form on V. Let t : T pVq Ñ T pVq be the K-linear map
given on pure tensors by

tpv1 b v2 b . . .b vkq “ vk b vk´1 b . . .b v1 .

Then t preserves the ideal I from the proof of Proposition 1.21 and thus descends to a K-linear map

¨t : C`pV, qq Ñ C`pV, qq ,

the transpose . Note that ¨t is an algebra antiautomorphism , i.e., px ¨ yqt “ yt ¨ xt for all x, y P C`pV, qq, and an
involution, i.e., pxtqt “ x for all x P C`pV, qq.

With an eye on Riemannian manifolds we are interested in two particular Clifford algebras.

Notation 1.27. Let qn : Rn Q x ÞÑ
řn

i“1 x2
i P R be the standard positive definite quadratic form on Rn and qC

n : Cn Q

z ÞÑ
řn

i“1 z2
i P C the standard quadratic form on Cn. We let

‚ C`n “ C`pRn, qnq,
‚ C`n “ C`pCn, qC

n q.

Remark 1.28. It follows from Definition 1.20(iii) that the complexification C`n bR C of C`n, together with the complex
extension of qn, is isomorphic to C`n. In particular, from now on we will view C`n as a subalgebra of C`n and think of
C`n as C`n with complex coefficients.

Proposition 1.29. There are algebra isomorphisms C`n – C`0
n`1 and C`n – C`0

n`1.
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Proof. Let pe1, . . . , en`1q be the standard basis of Rn`1. Define f : Rn Ñ C`0
n`1 by

f peiq :“ ´ei ¨ en`1 for all 1 ď i ď n ,

and linear extension. For x “
řn

i“1 xiei P Rn we have

f pxq2 “

˜

´

n
ÿ

i“1

xiei ¨ en`1

¸2

“

n
ÿ

i,j“1

xixjei ¨ en`1 ¨ ej ¨ en`1 “ ´

n
ÿ

i,j“1

xixjei ¨ ej ¨ en`1 ¨ en`1

“

n
ÿ

i,j“1

xixjei ¨ ej “

˜

n
ÿ

i“1

xiei

¸2

“ x ¨ x “ ´qnpxq ¨ 1 .

By the universal property of Clifford algebras, f extends to an algebra homomorphism rf : C`n Ñ C`0
n`1.

Evaluating rf on a vector space basis of C`n shows that it is an isomorphism (see Exercise no. 6). Finally, the
isomorphism C`n – C`0

n`1 is the complexification of rf . �

Theorem 1.30. For all m P N there are algebra isomorphisms

Φ2m : C`2m Ñ Mp2, 2; Cq bMp2, 2; Cq b . . .bMp2, 2; Cq – Mp2m, 2m; Cq ,

Φ2m`1 : C`2m`1 Ñ pMp2, 2; Cq b . . .bMp2, 2; Cqq ‘ pMp2, 2; Cq b . . .bMp2, 2; Cqq – Mp2m, 2m; Cq ‘Mp2m, 2m; Cq ,

given as follows. Let E :“ E2, U :“
ˆ

i 0
0 ´i

˙

, V :“
ˆ

0 i
i 0

˙

, W :“
ˆ

0 ´i
i 0

˙

. For 1 ď j ď m define

φ2m : C2m Q e2j´1 ÞÑ W bW b . . .bW bU b
j-th slot

Eb . . .b E ,

φ2m : C2m Q e2j ÞÑ W bW b . . .bW b V b
j-th slot

Eb . . .b E

and extend linearly. Then, φ2mpxq2 “ ´qC
2mpxq ¨ 1 for all x P C2m and by the universal property of Clifford algebras,

φ2m extends to an algebra homomorphism Φ2m, which turns out to be an isomorphism. To obtain Φ2m`1, we define

φ2m`1 : C2m`1 Q ej ÞÑ

#

pφ2mpejq, φ2mpejqq , 1 ď j ď 2m ,
piW b . . .bW,´iW b . . .bWq , j “ 2m` 1 ,

and proceed analogously.

Definition 1.31. Let K “ R, C and let A be a finite-dimensional, associative and unital K-algebra.
(i) A representation of A is a K-algebra homomorphism ρ : AÑ EndKpVq, where V is a finite-dimensional K-vector

space. In this situation, V is also called an A-module. If the representation ρ is fixed, we shall write x ¨ v :“ ρpxqpvq.
(ii) Given two representations ρ : A Ñ EndpVq and κ : A Ñ EndpWq, their direct sum is the representation

ρ‘ κ : AÑ EndpV ‘Wq, given by ρ‘ κpxqpv`wq “ ρpxqpvq ` κpxqpwq.
(iii) A representation ρ : A Ñ EndpVq is called reducible if it is a direct sum ρ “ ρ1 ‘ ρ2 : A Ñ EndpV1 ‘V2q with

Vi ‰ t0u, i “ 1, 2. In other words, ρ is reducible if V splits into a nontrivial direct sum V “ V1 ‘V2 such that
ρpxqpVjq Ď Vj for all x P A, j “ 1, 2. If ρ is not reducible, we call it irreducible .

(iv) Two representations ρ : A Ñ EndpVq, κ : A Ñ EndpWq are called equivalent or isomorphic if there exists a
K-vector space isomorphism F : V Ñ W such that ρpxq “ F´1 ˝ κpxq ˝ F for all x P A.

(v) We define modules, direct sums, irreducibility and equivalence analogously for representations of Lie groups.

Remark 1.32. If ρ : A Ñ EndpVq is any representation of A, then ρ can be decomposed into a direct sum ρ “
ρ1 ‘ . . .‘ ρk of irreducible representations ρi : A Ñ EndpViq. Indeed, we simply apply Definition 1.31(iii) recursively.
This process must end by finite-dimensionality of V.

For the next theorem, we need an important element in the Clifford algebras C`n respectively C`n.

Definition 1.33. Fix an orientation of Rn and let pe1, . . . , enq be an oriented orthonormal basis w.r.t. x¨, ¨yEukl. Define
the volume element ωn P C`n by

ωn :“ e1 ¨ e2 ¨ ¨ ¨ en ,
and the complex volume element ωC

n P C`n by

ωC
n :“ itpn` 1q{2ue1 ¨ e2 ¨ ¨ ¨ en “ itpn` 1q{2uω .

Here, txu denotes the largest integer which is smaller or equal to x P R.
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Theorem 1.34. There exists, up to equivalence, exactly one irreducible representation C`2m Ñ EndCpVq, where
dimC V “ 2m. There are, up to equivalence, exactly two irreducible representations ρ : C`2m`1 Ñ EndCpVq,
where dim V “ 2m. These can be distinguished by the action of the complex volume element ωC

2m`1, i.e., either
ρpωC

2m`1q “ ` id or ρpωC
2m`1q “ ´ id.

Proof. By Theorem 1.30, C`2m is isomorphic to Mp2m, 2m; Cq. It is a classical fact that the only irreducible
representation of Mp2m, 2m; Cq is the standard one, given by matrix multiplication.

Again by Theorem 1.34, C`2m`1 is isomorphic to Mp2m, 2m; Cq ‘ Mp2m, 2m; Cq. The two different represen-
tations are given by the standard representation of the first, respectively second, factor on C2m

.
For the proof of ρpωC

2m`1q “ ˘ id and that these are inequalivalent representations, see Exercise no. 9. �

Proposition 1.35. Let Φ2m : C`2m Ñ Mp2m, 2m; Cq – EndpC2m
q be the irreducible representation given in Theo-

rem 1.30 and F : C`2m´1 Ñ C`0
2m the algebra isomorphism from Proposition 1.29. Then the representation Φ2m ˝ F :

C`2m´1 Ñ Mp2m, 2m; Cq – EndpC2m
q is (equivalent to) the direct sum of the two irreducible representations of C`2m´1.

Proof. See Exercise 10. �

1.3. The Spin group, its Lie algebra and representations.

Notation and Remarks 1.36. Denote by C`˚n the multiplicatively invertible elements of C`n. Then C`˚n is an open
subset of C`n and hence a smooth manifold. Multiplication and inversion on C`˚n are both smooth, hence C`˚n is a Lie
group.

Definition 1.37. (i) The Clifford group Γn of C`n is the closed subgroup of C`˚n given by

Γn :“
!

x P C`n | αpxq ¨ v ¨ x´1 P Rn for all v P Rn
)

.

(ii) Define the continuous group homomorphism λn : Γn Ñ Glpn; Rq by

λnpxqpvq :“ αpxq ¨ v ¨ x´1 .

(iii) The norm of C`n is the map

N : C`n Q x ÞÑ x ¨ αpxtq “ x ¨ αpxqt P C`n .

Remark 1.38. (i) The maps α, ¨t : C`n Ñ C`n leave Γn invariant. Indeed, if x P Γn, then αpxq ¨ v ¨ x´1 P Rn for all
v P Rn and by definition of α we have

αpαpxqq ¨ v ¨ αpxq´1 “ ´αpαpxqq ¨ αpvq ¨ αpxq´1 “ ´αpαpxq ¨ v ¨ x´1q “ αpxq ¨ v ¨ x´1 P Rn

for all v P Rn and analogously for ¨t.
(ii) Note that for x P Rn we have Npxq “ x ¨ αpxtq “ x ¨ αpxq “ ´x ¨ x “ qnpxq “ }x}2.

Lemma 1.39. The kernel of the group homomorphism λn : Γn Ñ Glpn; Rq is ker λn “ R˚ ¨ 1.

Proof. Let x P ker λn. Then by definition αpxq ¨ v ¨ x´1 “ v for all v P Rn, which is equivalent to

αpxq ¨ v “ v ¨ x for all v P Rn .

We decompose x into its even and odd part, x “ x0 ` x1 with xi P C`i
n. Then the above statement is equivalent

to

x0 ¨ v “ v ¨ x0 and ´ x1 ¨ v “ v ¨ x1 for all v P Rn .(1.3)

Let pe1, . . . , enq be the standard basis of Rn. We express x0 as a linear combination of the basis vectors from
Exercise 6 and write

x0 “ a` e1b ,
where a P C`0

n, b P C`1
n and neither a nor b contain a term with a factor e1. We apply the first relation in (1.3) to

v “ e1 and obtain
pa` e1bqe1 “ e1pa` e1bq .

Since a has even degree and contains no term with a factor e1 we have ae1 “ e1a. Analogously, we have
e1b “ ´be1. Hence,

a` e1b “ a´ e1b ,
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which in turn implies e1b “ 0 and x0 contains to term with a factor e1. By applying the same argument to
ei, i “ 2, . . . , n, we conclude that x0 is a linear combination of the elements from Exercise 6 no term of which
contains a factor ei, i.e., x0 P R ¨ 1.

Proceeding analogously with the second relation in (1.3) shows x1 P R ¨ 1. But since 1 P C`0
n we must have

x1 “ 0. Hence x “ x0 P R ¨ 1X Γn “ R˚ ¨ 1. �

Lemma 1.40. If x P Γn, then Npxq P R˚ and the restriction N|Γn : Γn Ñ R˚ is a group homomorphism with
Npαpxqq “ Npxq for all x P Γn.

Proof. Let x P Γn. Then αpxq ¨ v ¨ x´1 P Rn for all v P Rn. Since the transpose acts as the identity on Rn, we
get pxtq´1 ¨ v ¨ αpxqt “ αpxq ¨ v ¨ x´1. Thus, v “ xt ¨ αpxq ¨ v ¨ pαpxqt ¨ xq´1 “ αpxqt ¨ x ¨ v ¨ pαpxqt ¨ xq´1 which
implies that αpxqt ¨ x P ker λn. By Remark 1.38(i), y “ αpxqt P Γn and by what we just showed αpyqt ¨ y “
αpαpxqtqt ¨ αpxqt “ x ¨ αpxqt “ Npxq P ker λn. By the last lemma, Npxq P R˚ ¨ 1.

To show that N restricted to Γn is a homomorphism, note that R ¨ 1 is central in C`n. Hence, for x, y P Γn, we
have Npx ¨ yq “ x ¨ y ¨ αpx ¨ yqt “ x ¨ y ¨ αpyqt ¨ αpxqt “ xNpyqαpxqt “ x ¨ αpxqtNpyq “ NpxqNpyq.

At last, we have Npαpxqq “ αpxq ¨ αpαpxqqt “ αpx ¨ αpxqtq “ αpNpxqq “ Npxq. �

Proposition 1.41. We have

(i) Rnzt0u Ď Γn,
(ii) for x P Rnzt0u, λnpxq P Glpn; Rq is the reflection about the hyperplane xK. In particular, λnpΓnq Ď Opnq, the

orthogonal group.

Proof. Let x P Rnzt0u. By Lemma 1.39, λnpxq “ λnp}x} ¨ x
}x} q “ λnp

x
}x} q, which is why we can assume w.l.o.g.

that }x} “ 1. Choose an orthonormal basis pe1 “ x, e2, . . . , enq of Rn. Then, for v “
řn

i“1 aiei we have by the
Clifford relations

λnpxqpvq “ λnpe1q

˜

n
ÿ

i“1

aiei

¸

“

n
ÿ

i“1

aiαpe1q ¨ ei ¨ e´1
1 “ ´

n
ÿ

i“1

aie1 ¨ ei ¨ e´1
1

“ ´a1e1 ´

n
ÿ

i“2

aie1 ¨ ei ¨ e´1
1 “ ´a1e1 `

n
ÿ

i“2

aiei P Rn .

In particular, λnpxq is the reflection about xK and }λnpxqpvq} “ }v}. �

Definition 1.42. The Pin group Pinpnq Ď C`˚n is the kernel of N : Γn Ñ R˚. The Spin group Spinpnq is the group
Pinpnq X C`0

n.

Theorem 1.43. (i) The Pin and Spin groups are Lie groups explicitely given by

Pinpnq “ tv1 ¨ v2 ¨ ¨ ¨ vk | vi P Rn, }vi} “ 1, 0 ď i ď k, k P N0u ,

Spinpnq “ tv1 ¨ v2 ¨ ¨ ¨ v2k | vi P Rn, }vi} “ 1, 0 ď i ď k, k P N0u .

(ii) λn|Pinpnq : Pinpnq Ñ Opnq is a surjective Lie group homomorphism with kernel t˘1u.
(iii) pλn|Pinpnqq

´1pSOpnqq “ Spinpnq.
(iv) Spinpnq is connected for n ě 2.

Proof. Recall that any orthogonal map A P Opnq can be written as the concatenation Av1 ˝ . . . ˝ Avk of reflections
Avi about hyperplanes vKi , where vi P Rn with }vi} “ 1. By Proposition 1.41 and the definition of Pinpnq,
v1 ¨ ¨ ¨ vk P Pinpnq and λnpv1 ¨ ¨ ¨ vkq “ λnpv1q ¨ ¨ ¨λnpvkq “ Av1 ˝ . . . ˝ Avk “ A. Furthermore, the kernel of
λn|Pinpnq is ker λn X ker N “ tx P R˚ ¨ 1 |Npxq “ 1u “ t˘1u, which also shows the explicit expression for
Pinpnq.

Recall also that the group SOpnq Ď Opnq can be characterized as the group of maps which can be written as
the concatenation of an even number of reflections. This shows (iii) and the explicit expression for Spinpnq.

To see that Pinpnq is a Lie group, recall that Γn is a closed subgroup of the Lie group C`˚n . It is a theorem (see,
e.g., Lee, J. M. Introduction to smooth manifolds) that any algebraic subgroup of a Lie group which is topologi-
cally closed is automatically a Lie group in its own right. This makes Γn into a Lie group and N : Γn Ñ R˚ a
Lie group homomorphism. Now Pinpnq is the kernel of N, which makes it a topologically closed algebraic sub-
group and therefore a Lie group. Similarly, Spinpnq is the inverse image of the Lie group SOpnq and therefore,
again, a topologically closed algebraic subgroup, hence a Lie group. The map λn|Pinpnq is the concatenation
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of multiplication, inversion and the (restriction of the) linear map α, hence smooth and therefore a Lie group
homomorphism.

In light of (iii), it suffices to connect ´1 to 1 with an arc in Spinpnq to see (iv). Such an arc is

c : r0, πs Q t ÞÑ cosptq ` sinptqe1 ¨ e2 “ psin t
2 e1 ´ cos t

2 e2qpsin t
2 e1 ` cos t

2 e2q P Spinpnq .

�

Remark 1.44. We will henceforth only be interested in the Spin group and will from now on view λn as a map

λ :“ λn : Spinpnq Ñ SOpnq

g ÞÑ pv ÞÑ αpgq ¨ v ¨ g´1 “ g ¨ v ¨ g´1q .

For the next proposition, recall that the Lie group C`˚n is an open subset of C`n. Hence, T1C`˚n “ C`n. Since
Spinpnq is a submanifold of C`˚n , T1 Spinpnq is a subspace of C`n.

Proposition 1.45. The tanget space to Spinpnq at 1 is

T1 Spinpnq “ spanRtei ¨ ej | 1 ď i ă j ď nu Ď C`n .

Proof. For 1 ď i ă j ď n, consider the curve

γ : R Q t ÞÑ cosptq ` sinptqei ¨ ej “ psin t
2 ei ´ cos t

2 ejqpsin t
2 ei ` cos t

2 ejq P Spinpnq Ď C`n .

We have γp0q “ 1 and d
dt |t“0γptq “ ei ¨ ej. This shows ”Ě“. By Exercise 6, the stated subset of C`n clearly

has dimension 1
2 npn ´ 1q. But from Theorem 1.43, we already know that dim T1 Spinpnq “ dim Spinpnq “

dim SOpnq “ 1
2 npn´ 1q, showing ”Ď“. �

Corollary 1.46. The Lie algebra of Spinpnq is

spinpnq – spanRtei ¨ ej | 1 ď i ă j ď nu Ď C`n

with the Lie bracket rx, ys “ x ¨ y´ y ¨ x.

Proof. Following Example 1.14, one checks that the Lie algebra of C`˚n is C`n equipped with the Lie bracket
rx, ys “ x ¨ y´ y ¨ x. The Lie algebra of Spinpnq then inherits this Lie bracket. �

Proposition 1.47. The differential λ˚ “ dλe : T1 Spinpnq – spinpnq Ñ sopnq – TEn SOpnq is an isomorphism
explicitely given by

λ˚pei ¨ ejq “ 2Xei ,ej ,

where Xei ,ej are the matrices from Exercise 5.

Proof. Since λ : Spinpnq Ñ SOpnq is a surjective Lie group homomorphism between Lie groups of equal
dimension, its differential at 1 must be an isomorphism. We consider again for 1 ď i ă j ď n the path
γ : R Q t ÞÑ cosptq ` sinptqei ¨ ej P Spinpnq. Note that γptq´1 “ γp´tq. Hence, for v “

řn
k“1 vkek P Rn we have

λ˚pei ¨ ejqpvq “
d
dt |t“0

λpγptqqpvq “
d
dt |t“0

γptq ¨ v ¨ γptq´1

“
d
dt |t“0

γptq ¨ v ¨ γp´tq “ ei ¨ ej ¨ v´ v ¨ ei ¨ ej

“ vipei ¨ ej ¨ ei ´ ei ¨ ei ¨ ejq ` vjpei ¨ ej ¨ ej ´ ej ¨ ei ¨ ejq `
ÿ

k‰i,j

vkpei ¨ ej ¨ ek ´ ek ¨ ei ¨ ejq

“ 2viej ´ 2vjei “ 2pviej ´ vjeiq “ 2Xei ,ej v .

�

Definition 1.48. The (complex) fundamental spin representation of Spinpnq is the Lie group homomorphism

κn : Spinpnq Ñ GlpΣnq

given by restricting an irreducible complex representation C`n Ñ EndpΣnq to Spinpnq Ď C`0
n Ď C`n. We call Σn the

spinor module and an element s P Σn a spinor .
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Proposition 1.49. When n is odd the definition of the complex spin representation is independent of which irreducible
representation of C`n was used. In particular, it is well-defined. Moreover, when n is odd, κn is irreducible.

When n is even, there is a decomposition

κn “ κ`n ‘ κ´n , κ˘n : Spinpnq Ñ GlpΣ˘n q

into irreducible representations κ˘n called the positive respectively negative half-spin representations . Accordingly, the
modules Σ˘n are the positive respectively negative half-spinor modules .

Proof. Let n “ 2m` 1. Recall from Theorem 1.34 that C`2m`1 has two irreducible representations ρi : C`2m`1 Ñ

GlpVq, i “ 1, 2, which can be distinguished by ρ1pω
C
2m`1q “ ` id and ρ2pω

C
2m`1q “ ´ id. Since α is an alge-

bra automorphism of C`2m`1, ρ2 ˝ α is also a representation of C`2m`1 with ρ2 ˝ αpωC
2m`1q “ ρ2p´ωC

2m`1q “

´ρ2pω
C
2m`1q “ ` id, so ρ1 and ρ2 ˝ α are equivalent. Now recall that C`0

2m`1 is the p`1q-eigenspace of α, hence
ρ1 and ρ2 are equivalent when restricted to C`0

2m`1.
By Proposition 1.29 there is an algebra isomorphism F : C`2m Ñ C`0

2m`1. Since ρi ˝ F : C`2m Ñ GlpVq
is a nontrivial complex representation of C`2m of dimension 2m, it must be the unique irreducible one, hence
ρ “ ρi|C`0

2m`1
is an irreducible representation of C`0

2m`1.
To see that ρ| Spinp2m`1q is an irreducible Lie group representation, assume that ρ| Spinp2m`1q splits into the

direct sum of two nontrivial representations, i.e., there exists a nontrivial splitting V “ W1 ‘W2 such that
ρpxqpWjq Ď Wj for all x P Spinp2m` 1q. By Exercise 6 and Theorem 1.43(i), Spinp2m` 1q contains an additive
basis ei1 ¨ ei2 ¨ ¨ ¨ ei2k , 1 ď i1 ă i2 ă . . . ă i2k ď 2m ` 1 of C`0

2m`1. Since ρ is the restriction to Spinp2m ` 1q
of an irreducible representation of C`0

n, not all of these basis elements leave Wj invariant, i.e., there exists
1 ď i1 ă i2 ă . . . ă i2k ď 2m` 1 and j P t1, 2u such that ρpei1 ¨ ei2 ¨ ¨ ¨ ei2kqpWjq Ę Wj. A contradiction. Hence,
ρSpinp2m`1q is an irreducible representation of Spinp2m` 1q.

Now let n “ 2m. There is exactly one irreducible representation ρ : C`2m Ñ GlpVq of C`2m. If we restrict
ρ to C`0

2m, then Proposition 1.35 tells us that ρ|C`0
2m

splits into the direct sum of two inequivalent irreducible

representations. We argue as in the case n “ 2m` 1 that their restrictions to Spinp2mq Ď C`0
2m are irreducible

Lie group representations. �

Remark 1.50. The fundamental spin representation is not induced by a representation of SOpnq (through λ). Indeed,
´1 P Spinpnq and κnp´1q “ ´ idΣn while for every representation ρ : SOpnq Ñ GlpVq we have ρ ˝ λp´1q “ ρpEnq “

idV .

Proposition 1.51. Let ρ : C`n Ñ GlpVq be an irreducible representation of the complex Clifford algebra C`n. Then
there exists an inner product x¨, ¨y on V such that

(1.4) xρpxqpvq, ρpxqpwqy “ xv, wy for all x P Rn Ď C`n with }x} “ 1 and all v, w P V .

In particular,
(i) multiplication by unit vectors is skew-symmetric , i.e., for all x P Rn with }x} “ 1 and all v, w P V we have

xρpxqpvq, wy “ xρpxq2pvq, ρpxqpwqy “ xρpx2qpvq, ρpxqpwqy “ ´xv, ρpxqpwqy ,

(ii) there exists a Spinpnq-invariant inner product x¨, ¨y on Σn , i.e., xκnpgqpσq, κnpgqpτqy “ xσ, τy for all g P Spinpnq
and σ, τ P Σn. In short: κn : Spinpnq Ñ UpΣnq.

Proof. Since ρ is an irreducible representation, there exists a linear isomorphism F : V Ñ C2n{2
such that ρp¨q “

F´1 ˝Φnp¨q ˝ F in case n “ 2m or ρp¨q “ F´1 ˝πi ˝Φnp¨q ˝ F if n “ 2m` 1, where Φn is the algebra isomorphism
from Theorem 1.30 and πi, i “ 1, 2, the projection on the first respectively second factor.

We define the inner product x¨, ¨y on V to be the pullback xv, wy :“ pFpvq, Fpwqq of the standard hermitian
inner product

pa, bq “
2n{2
ÿ

i“1

aibi

on C2n{2
. Then (1.4) follows from the matrices U, V and W from Theorem 1.30 being unitary. �
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Definition 1.52. (i) A Clifford multiplication is a complex linear map

µ : Rn b Σn Ñ Σn

xb σ ÞÑ x ¨ σ :“ µpxb σq

which satisfies
x ¨ py ¨ σq ` y ¨ px ¨ σq “ ´2xx, yy ¨ σ for all x, y P Rn, σ P Σn .

(ii) Two Clifford multiplications µ1, µ2 : Rn b Σn Ñ Σn are equivalent if there exists a vector space isomorphism
F : Σn Ñ Σn such that

µ1pxb σq “ F´1pµ2pxb Fpσqqq for all x P Rn, σ P Σn .

Proposition 1.53. If n is even then there exists up to equivalence exactly one Clifford multiplication. If n is odd
there exist up to equivalence exactly two Clifford multiplications one of which is the negative of the other. They can be
distinguished by the action of the complex volume element ωC

n , i.e., they satisfy

ωC
n ¨ σ :“ itpn` 1q{2ue1 ¨ pe2 ¨ p. . . pen ¨ σqqq “ ˘σ for all σ P Σn .

Proof. If ρ : C`n Ñ EndpΣnq is an irreducible representation then µpxbσq :“ ρpxqpσq is a Clifford multiplication.
This shows existence and in case n is odd that there are two Clifford multiplications which can be distinguished
by the action of the complex volume element.

To see uniqueness, let µ : RnbΣn Ñ Σn be a Clifford multiplication. Define ρ : Rn Ñ EndpΣnq by ρpxqpσq :“
µpx b σq. Then ρpxq2 “ ´}x}2 ¨ idΣn . Hence, ρ extends uniquely to an algebra homomorphism rρ : C`n Ñ

EndpΣnq and by complexification to an algebra homomorphism rρ : C`n Ñ EndpΣnq. Since dim Σn “ 2n{2, rρ
must be an irreducible representation. This completes the proof. �

Corollary 1.54. Every Clifford multiplication satisfies
(i) xx ¨ σ, x ¨ τy “ xσ, τy and

(ii) xx ¨ σ, τy “ ´xσ, x ¨ τy
for all x P Rn with }x} “ 1 and all σ, τ P Σn, where x¨, ¨y is the Spinpnq-invariant inner product on Σn.

Remark 1.55. The group Spinpnq acts on Σn by the fundamental spin representation κn : Spinpnq Ñ UpΣnq and on Rn

by λ : Spinpnq Ñ Opnq. If we form the tensor product RnbΣn, then Spinpnq acts thereon via the tensor representation

λb κn : Spinpnq Ñ UpRn b Σnq

g ÞÑ pxb σ ÞÑ λpgqpxq b κnpgqpσqq .

Proposition 1.56. Every Clifford multiplication µ : Rn b Σn Ñ Σn is Spinpnq-equivariant , i.e., we have

µpλb κnpgqpxb σqq “ κnpgqpµpxb σqq for all g P Spinpnq, x P Rn, σ P Σn .

Put differently, the diagram

Rn b Σn
µ //

λbκn
��

Σn

κn

��
Rn b Σn

µ // Σn

is commutative.

Remark. The following proof actually shows: If we choose one representative µ from the given equivalence class of
Clifford multiplications, then there exists precisely one representative κn of the equivalence class of the fundamental spin
representation such that µ is Spinpnq-equivariant w.r.t. λb κn and κn.

Proof. The Clifford multiplication µ satisfies µpx b σq “ ρpxqpσq where ρ : C`n Ñ EndpΣnq is an irreducible
representation. We also have κ “ ρ| Spinpnq. The claim is now a straightforward calculation:

µpλb κnpgqpxb σqq “ µpλpgqpxq b κnpgqpσqq “ µpg ¨ x ¨ g´1 b ρpgqpσqq

“ ρpg ¨ x ¨ g´1qpρpgqpσqq “ ρpg ¨ x ¨ g´1 ¨ gqpσq “ ρpg ¨ xqpσq “ ρpgq ˝ ρpxqpσq

“ κnpgqpµpxb σqq .

�
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Remark 1.57. Since there is no ambiguity about how Spinpnq acts on Σn (via κn) respectively Rn (via λ), we can
abbreviate notation and simply write gσ respectively gx for all g P Spinpnq, x P Rn and σ P Σn.

The equivariance of Clifford multiplication can now be stated very concisely:

gx ¨ gσ “ gpx ¨ σq for all g P Spinpnq, x P Rn, σ P Σn .

In fact, using this shorthand notation, the proof of Proposition 1.56 becomes very short:

gx ¨ gσ “ g ¨ x ¨ g´1 ¨ gσ “ g ¨ x ¨ σ “ gpx ¨ σq .

Note, however, that it is not easy to unravel what exactly is happening here.

2. INTERMEZZO: GAUGE THEORY

Definition 2.1. Let P be a smooth manifold and G a Lie group.
(i) A (right-)action of G on P is a smooth map

Pˆ G Q pp, gq ÞÑ p ¨ g P P

such that
‚ p ¨ e “ p for all p P P and
‚ pp ¨ gq ¨ h “ p ¨ pg ¨ hq for all g, h P G and p P P.

For g P G the map Rg : P P p ÞÑ p ¨ g P P is called right-translation by g . Rg is a diffeomorphism with inverse
R´1

g “ Rg´1 .
(ii) A right action of G on P is

‚ free if p ¨ g “ g for p P P and g P G implies g “ e, i.e., the only right translation that has fixed points is Re,
‚ transitive if for all p, q P P there exists a g P G such that p ¨ g “ q,
‚ simply-transitive if it is free and transitive, i.e., if for all p, q P P there exists precisely one g P G such that

p ¨ g “ q.

Example 2.2. Let V be a real n-dimensional vector space and let P :“ tv “ pv1, . . . , vnq P Vn | v is a basis of Vu. Then
P is a smooth manifold of dimension n2. The group G “ Glpn; Rq acts on P from the right by

Pˆ G Q pv, Aq ÞÑ v ¨ A “

˜

n
ÿ

i“1

Ai,1vi, . . . ,
n
ÿ

i“1

Ai,nvi

¸

P P .

Indeed, we have v ¨ En “ v for all v P P and if v P P, A, B P Glpn; Rq then

pv ¨ Aq ¨ B “

˜

n
ÿ

i“1

Ai,1vi, . . . ,
n
ÿ

i“1

Ai,nvi

¸

¨ B “

¨

˝

n
ÿ

j“1

Bj,1

n
ÿ

i“1

Ai,jvi, . . . ,
n
ÿ

j“1

Bj,n

n
ÿ

i“1

Ai,jvi

˛

‚

“

¨

˝

n
ÿ

i,j“1

Ai,jBj,1vi, . . . ,
n
ÿ

i,j“1

Ai,jBj,nvi

˛

‚“ v ¨ pA ¨ Bq .

The action is smooth since it is a polynomial in the entries of its arguments. Moreover, it is easy to see that the action is
simply-transitive.

Definition 2.3. Let G be a Lie group and M a smooth manifold.
(i) A G-principal fibre bundle over M is a triple pP, πP; Gq consisting of a manifold P, a smooth map πP : P Ñ M

and a right-action of G on P such that
(a) πP is surjective,
(b) the action of G on P is free,
(c) πPppq “ πPpqq if and only if there exists g P G such that p ¨ g “ q,
(d) for every x P M there exists an open neighborhood U Ď M containing x and a section of P on U , i.e., a smooth

map sU : U Ñ P such that πp ˝ sU “ idU .
(ii) Let pP, πP; Gq and pQ, πQ; Gq be G-principal fibre bundles over M. A smooth map Φ : P Ñ Q is called

G-principal fibre bundle morphism if
(a) πQ ˝Φ “ πP and
(b) Φ is (G-)equivariant , i.e., we have Φpp ¨ gq “ Φppq ¨ g for all p P P and g P G.

(iii) The G-principal fibre bundles P and Q are isomorphic , denoted P – Q, if there exists a
G-principal fibre bundle isomorphism , i.e., a bijective G-principal fibre bundle morphism Φ : P Ñ Q.
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Remark 2.4. (i) By Definition 2.3(i)(b) and (c) G acts simply-transitively on every fibre Px :“ π´1
P pxq of P over M.

(ii) If there is no danger of confusion we will refer to the total space P of a G-principal fibre bundle pP, πP; Gq as the
principal fibre bundle.

Example 2.5. Let M be a smooth manifold and G a Lie group. Define the manifold P :“ MˆG with πP : P Q px, pq ÞÑ
x P M and the G-action on P by multiplication of G from the right on the second factor. Then pP, πP; Gq is a G-principal
fibre bundle called the trivial G-principal fibre bundle over M .

Proposition 2.6. Let pP, πP; Gq be a G-principal fibre bundle over M. Then pP, πP; Gq is isomorphic to the trivial
principal fibre bundle over M if and only if there exists a global section of P, i.e., a smooth map s : M Ñ P such that
πP ˝ s “ idM.

Proof. Let Q be the trivial G-principal fibre bundle over M. We can always define a global section over Q by

t : M Ñ Q “ Mˆ G

x ÞÑ px, eq .

If Φ : Q Ñ P is a G-principal fibre bundle isomorphism then s :“ Φ ˝ t is a global section of P.
Now suppose that P admits a global section s : M Ñ P. Define a map

Φ : Q “ Mˆ G Ñ P

px, gq ÞÑ spxq ¨ g .

Then Φ is a G-principal fibre bundle isomorphism. �

Remark 2.7. Not every G-principal fibre bundle P over M is isomorphic to the trivial principal fibre bundle. However,
every such P is locally isomorphic to Mˆ G in the following sense. For every x P M there exists an open neighborhood
U Ď M of x such that π´1

P pUq – U ˆ G. Indeed, if x P M then by Definition 2.3(i)(d) there exists such a U and a
section sU : U Ñ P. The map

Φ : U ˆ G Ñ π´1
P pUq

px, gq ÞÑ sUpxq ¨ g

is a G-principal fibre bundle isomorphism between U ˆ G and π´1
P pUq.

Example 2.8. Let M be a smooth n-dimensional manifold. For x P M define

GlpMqx :“ tvx “ pv1, . . . , vnq | vx is a basis of Tx Mu

and let
GlpMq :“

ď

xPM

GlpMqx .

Define the projection via

π :“ πGlpMq : GlpMq Ñ M
vx ÞÑ x .

Note that if pU, ϕ “ px1, . . . , xnqq is a coordinate chart of M, then for every x P U the associated frame sUpxq :“
pB1pxq, . . . , Bnpxqq P GlpMqx. The set GlpMq has a unique structure as a smooth manifold if one requires that all such
coordinate frames are smooth. This then turns πGlpMq : GlpMq Ñ M into a smooth map.

There is a G “ Glpn; Rq-right-action of Glpn; Rq on GlpMqx as defined in Example 2.2. This action induces a
right-action of Glpn; Rq on GlpMq:

GlpMq ˆGlpn; Rq Ñ GlpMq

pvx “ pv1, . . . , vnq, Aq ÞÑ vx ¨ A “

˜

n
ÿ

i“1

Ai,1vi, . . . ,
n
ÿ

i“1

Ai,nvi

¸

.(2.1)

The principal fibre bundle pGlpMq, πGlpMq; Glpn; Rqq is called the frame bundle of M .

Every additional structure on the manifold M defines a subbundle of GlpMq.

Example 2.9. Let M again be a smooth n-dimensional manifold.
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(i) Assume that M is oriented. Let G “ Gl`pn; Rq “ tA P Glpn; Rq | det A ą 0u and define

Gl`pMq :“ tvx P GlpMqx | vx is a positively oriented basis of Tx M, x P Mu .

We define a Gl`pn; Rq right-action on Gl`pMq as the restriction of the Glpn; Rq-action on GlpMq. With πGl`pMq “

πGlpMq|Gl`pMq
, the tuple pGl`pMq, πGl`pMq; Gl`pn; Rqq is then a Gl`pn; Rq-principal fibre bundle called the

bundle of positively oriented frames .
(ii) Let g be a Riemannian metric on M. Define

OpMq :“ OpM, gq :“ tvx P GlpMqx | vx is an orthonormal basis of pTx M, gxqu .

Analogously to before, we let πOpMq : OpMq Q vx ÞÑ x P M and define an Opnq-right-action on OpMq by
restricting the Glpn; Rq-action on GlpMq. Then the Opnq-principal fibre bundle pOpMq, πOpMq; Opnqq is called the
bundle of orthonormal frames of M .

(iii) Combining the previous two examples leads us to the SOpnq-principal fibre bundle of
positively oriented orthonormal frames of M . That is, assume M is oriented and let g be a Riemannian metric
on M. Define

SOpMq :“ SOpM, gq :“ tvx P GlpMqx | vx is a positively oriented orthonormal basis of pTx M, gxqu

and πSOpMq : SOpMq Q vx ÞÑ x P M. Formula (2.1) defines an SOpnq-right-action on SOpMq turning
pSOpMq, πSOpMq; SOpnqq into a principal fibre bundle.

A generalization of the notion of G-principal fibre bundle morphism is the following.

Definition 2.10. Let pP, πP; Gq be a G-principal fibre bundle over M and f : H Ñ G a Lie group homomorphism.
An f -reduction of P is a pair pQ, Φq consisting of an H-principal fibre bundle pQ, πQ; Hq over M and a smooth map
Φ : Q Ñ P such that

(i) πP ˝Φ “ πQ and
(ii) Φpq ¨ hq “ Φpqq ¨ f phq for all q P Q, h P H.

Properties (i) and (ii) can be summarized by saying that the diagram

Qˆ H

Φˆ f
��

¨ // Q

Φ
��

πQ

��
Pˆ G ¨ // P

πP // M

is commutative.
If we are in the situation that H Ď G is a Lie subgroup and f “ ι : H ãÑ G is the inclusion, then we also call any

f -reduction pQ, f q an H-reduction of P or a reduction of P to H .

Example 2.11. Any of the principal fibre bundles from Example 2.9 together with the inclusion ι : H Ñ Glpn; Rq,
H “ Gl`pn; Rq, Opnq, SOpnq, is an H-reduction of the frame bundle GlpMq.

Definition 2.12. Let K “ R or K “ C and M a smooth manifold.
(i) A K-vector bundle of rank k ă 8 over M is a triple pE, πE; Vq consisting of a smooth manifold E, a smooth map

πE : E Ñ M and a k-dimensional K-vector space V such that
(a) πE is surjective,
(b) Ex :“ πEpxq´1 is K-linearly isomorphic to V for all x P M and
(c) for all x P M there exists an open neighborhood U Ď M of x and k pointwise linearly independent local sections of E over U

, i.e., there exist k smooth maps s1, . . . , sk : U Ñ E such that
(1) πE ˝ sj “ idU for all j “ 1, . . . , k and
(2) ps1pyq, . . . , skpyqq is a basis of Ey for all y P U.
In case K “ R we call E a real vector bundle and in case K “ C a complex vector bundle .

(ii) We denote the space of local sections of E over an open set U Ď M by ΓpU, Eq, i.e.,

ΓpU, Eq “ ts : U Ñ E | s is smooth and πE ˝ s “ idUu .

In the particular case U “ M we call the elements of ΓpU, Eq just sections of E or sometimes global sections of E .
(iii) For sections s1, . . . , sk : U Ñ E as in (i)(c) we call the smooth map s “ ps1, . . . , skq : U Ñ Ek a (local) frame for E.

In case U “ M, we call s a global frame for E .
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(iv) Let E, F be two K-vector bundles over M. A smooth map Φ : E Ñ F is a vector bundle homomorphism if
(a) πF ˝Φ “ πE and
(b) Φ|Ex : Ex Ñ Fx is K-linear for all x P M.
We call Φ a vector bundle isomorphism if it is invertible and then we call E and F isomorphic .

Example 2.13. Let M be a smooth manifold.

(i) Let V be a k-dimensional K-vector space. Define E :“ MˆV and πE : E “ MˆV Q px, vq ÞÑ x P M. If we
define

px, vq ` px, wq :“ px, v`wq ,

λ ¨ px, vq :“ px, λ ¨ vq

for all x P M, v, w P V and λ P K, then pE, πE; Vq is a rank k vector bundle over M. We call E the
trivial vector bundle with fibre V over M , or simply trivial .

The sections ΓpM, Eq are smooth maps s : M Ñ E “ MˆV satisfying πE ˝ spxq “ x, hence they are of the
form spxq “ px, vpxqq for some v P C8pM, Vq.

(ii) The tanget bundle TM of M is a real vector bundles of rank k “ dim M over M. The sections ΓpM, TMq of TM
are precisely the smooth vector fields VpMq.

Remark 2.14. Note that the space of sections ΓpM, Eq of the K-vector bundle E over M is a modul over the ring
C8pM; Kq of smooth K-valued functions on M. Here, the sum of two sections and the product of a smooth function
and a section of E are defined pointwise, i.e., for f P C8pM, Kq and s, t P ΓpM, Eq the sections s` t, f s P ΓpM, Eq are
defined by

ps` tqpxq :“ spxq ` tpxq P Ex ,

p f sqpxq :“ f pxqspxq P Ex

for all x P M.

In linear algebra we learn how to construct new vector spaces out of given ones, e.g., the dual vector space,
the direct sum or tensor product of two vector spaces. These constructions carry directly over to vector bun-
dles.

Definition 2.15. (i) Let pE, πE; Vq and pF, πF; Wq be two K-vector bundles of rank k and l, respectively, over M.
The Whitney-Sum of E and F is the K-vector bundle pE‘ F, πE‘F; V ‘Wq, where

E‘ F :“
ď

xPM

Ex ‘ Fx

and
πE‘F : E‘ F Q pex, fxq ÞÑ x P M .

If x P M and U, V Ď M are neighborhoods of x such that there are local frames s “ ps1, . . . , skq : U Ñ Ek and
t “ pt1, . . . , tlq : V Ñ Fl , then the k` l maps

s1|W , . . . , sk|W : W Ñ E Ď E‘ F , t1|W , . . . , tl |W : W Ñ F Ď E‘ F

where W :“ U X V, are a pointwise linearly independent. The requirement that all these collections of maps are
smooth equips E‘ F with a topology and a smooth structure, which then turns πE‘F into a smooth map.

(ii) As above, let pE, πE; Vq and pF, πF; Wq be two K-vector bundles of rank k and l, respectively, over M. We consider
the set

Eb F :“
ď

xPM

Ex bK Fx

with the projection

πEbF : Eb F Q
ÿ

i,j

ei
x b f j

x ÞÑ x P M .

For local frames s of E and t of F as above, the k ¨ l maps

ui,j : W Ñ Eb F i “ 1, . . . , k and j “ 1, . . . , l

with
ui,jpyq “ sipyq b tjpyq for all y P W ,



18 SEBASTIAN BOLDT

are pointwise linearly independent. The requirement that all such maps constructed out of local frames of E and F are
smooth turns Eb F into a smooth manifold and πEbF into a smooth map. The vector bundle pEb F, πEbF; VbWq
is called the tensor product of E and F .

(iii) Let pE, πE; Vq be a K-vector bundle. We consider the set

E˚ :“
ď

xPM

E˚x

and the projection
πE˚ : E˚ Q αx ÞÑ x P M .

If s “ ps1, . . . , skq : U Ñ Ek is a local frame of E, then we define the dual frame ϕ “ pϕ1, . . . , ϕkq : U Ñ pE˚qk by
requiring that

pϕ1pxq, . . . , ϕkpxqq

is the basis of E˚x dual to the basis ps1pxq, . . . , skpxqq of Ex, for all x P U. That is, ϕipxqpsjpxqq “ δi,j for all x P U.
The requirement that all such dual frames are smooth turns E˚ into a smooth manifold and πE˚ into a smooth map.
The vector bundle pE˚, πE˚ ; V˚q is the dual vector bundle of E .

(iv) Let pE, πE; Vq be a complex vector bundle over M and let V be the complex conjugate vector space. That is, V is the
abelian group V together with the scalar multiplication CˆV Q pz, vq ÞÑ z ¨ v P V. We consider the set

E :“
ď

xPM

Ex

with projection
πE : E Q ex ÞÑ x P M .

Any local frame s “ ps1, . . . , skq : U Ñ Ek defines a a local frame s : U Ñ Ek. Thus, E directly inherits the
topology and smooth structure from E. The vector bundle pE, πE; Vq is the complex conjugate vector bundle of E .

In case pE, πE; Vq is a real vector bundle we define pE, πE; Vq :“ pE, πE; Vq.
(v) There exist many more constructions like HompE, Fq, ΛlE, . . .

Remark 2.16. (i) In case of the tangent bundle TM of a smooth manifold M, the dual bundle TM˚, called cotangent bundle,
is denoted T˚M. Note also that in case of the tangent and cotangent bundle we denote the individual fibres by Tx M
and T˚x M instead of TMx and T˚Mx, respectively.

(ii) Note that the above operations‘,b, ˚, . . . induce associated operations on the corresponding sections. For example,
if s P ΓpM, Eq and t P ΓpM, Fq, then sb t P ΓpM, Eb Fq is the section defined by psb tqpxq :“ spxq b tpxq.

Example 2.17. We consider the real vector bundle T˚Mb T˚M. An element b P pT˚Mb T˚Mqx “ T˚x Mb T˚x M
(x P M) can be thought of as a bilinear form, i.e., given v, w P Tx M we have bpv, wq P R. As usual, we call b symmetric
if bpv, wq “ bpw, vq for all v, w P Tx M and positive definite if bpv, vq ą 0 for all v P Tx Mzt0u. A Riemannian metric g
on M is nothing but an element of ΓpM, T˚Mb T˚Mq that is pointwise symmetric and positive definite. In other words,
g is a pointwise inner product depending smoothly on the basepoint.

More generally than the example of a Riemannian metric, we have the notion of a bundle metric.

Definition 2.18. Let pE, πE; Vq be a real or complex vector bundle over M. A bundle metric on E is a section x¨, ¨y P
ΓpE˚b E˚q which is pointwise an inner product, that is, pointwise symmetric and positive definite (K “ R) respectively
hermitian and positive definite (K “ C).

Remark 2.19. Just as for Riemannian metrics, a simple argument using a partition of unity shows that any vector
bundle carries a bundle metric.

So far, we have introduced two different types of fibre bundles, namely principal fibre bundles and vector
bundles. The next definition connects these two seamingly different worlds.

Definition 2.20. Let M be a smooth manifold, pP, πP; Gq a G-principal fibre bundle over M and ρ : G Ñ GlpVq a real
resp. complex representation of G on V. Define the set

E :“ Pˆρ V :“ PˆpG,ρq V :“ GˆV{ „

where the equivalence relation „ is given by

pp, vq „ pp ¨ g, ρpg´1qpvqq for all g P G ,



ADVANCED DIFFERENTIAL GEOMETRY II - SPIN GEOMETRY WINTER SEMESTER 2020/21 19

the projection πE : E Q rp, vs ÞÑ πPppq P M, and on each fibre Ex “ Px ˆpG,ρq V the vector space structure

µrp, vs ` νrp, ws :“ rp, µv` νws for all p P P, v, w P V, µ, ν P K .

We equip E with a topology and smooth structure by requiring that if s : U Ñ P is a local section of P and v P C8pU, Vq,
then U Q x ÞÑ rspxq, vpxqs P E is smooth. The real (V real) resp. complex (V complex) vector bundle pE, πE; Vq is the
vector bundle associated with P and ρ .

Remark 2.21. With respect to the construction in the last definition, the operations ‘,b, ˚,Hom, . . . on vector bundles
correspond exactly to the operations denoted by the same symbols on representations.

Example 2.22. Let M be a smooth manifold, GlpMq the frame bundle of M and ρ : Glpn; Rq Ñ GlpRnq the standard
representation. Then

Φ : GlpMq ˆρ Rn Ñ TM

rps1, . . . , snq, px1, . . . , xnq
ts ÞÑ

n
ÿ

i“1

xisi

is a vector bundle isomorphism. If ρ˚ : Glpn; Rq Ñ GlppRnq˚q is the representation dual to ρ, i.e., ρ˚pgqplqpxq “
lpρpg´1qxq for all l P pRnq˚ and x P Rn, then

Ψ : GlpMq ˆρ˚ pR
nq˚ Ñ TM

rps1, . . . , snq, py1, . . . , ynqs ÞÑ

n
ÿ

i“1

yiσi ,

where pσ1, . . . , σnq is the basis dual to ps1, . . . , snq, is a vector bundle isomorphism.

Proposition 2.23. Let M be a smooth manifold, pP, πP; Gq a G-principal fibre bundle over M and ρ : G Ñ GlpVq a
representation. If there exists a G-invariant inner product x¨, ¨y on V then on the vector bundle E “ Pˆρ V associated
with P and ρ there exists a bundle metric given by

xe, f yEx :“ xv, wy ,

where e “ rp, vs and f “ rp, ws for some p P Px.

Proof. We have to show that the bundle metric is well-defined, i.e., independent of the chosen representatives.
Let q P Px and let g P G be the unique element such that q “ p ¨ g. Then we have by definition e “ rp, vs “
rp ¨ g, ρpg´1qpvqs “ rq, ρpg´1qpvqs and f “ rp, ws “ rp ¨ g, ρpg´1qpwqs “ rq, ρpg´1qpwqs. Since the inner product
on V is G-invariant, we have xv, wy “ xρpg´1qpvq, ρpg´1qpwqy. Hence, the bundle metric is well-defined. �

Definition 2.24. Let pE, πE; Vq be a K-vector bundle over M.
(i) A linear map

∇ : ΓpM, Eq Ñ ΓpT˚Mb Eq

is called covariant derivative on E if

∇p f sq “ d f b s` f ¨∇s for all f P C8pM, Kq, s P ΓpM, Eq .

If s P ΓpM, Eq and X P VpMq, then the section ∇Xs :“ ∇spXq P ΓpEq is called covariant derivative of s in direction X.
(ii) If E comes with a bundle metric, a covariant derivative ∇ in E is called metric if

Xxs, ty “ x∇Xs, ty ` xs,∇Xty

for all X P VpMq, s, t P ΓpM, Eq. Here, xs, ty P C8pMq is the function xs, typxq :“ xspxq, tpxqyEx .

Example 2.25. The Levi-Civita connection of a Riemannian manifold pM, x¨, ¨y “ gq is the unique covariant derivative
∇LC on E “ TM given by the Koszul formula

x∇XY, Zy “
1
2
pXxY, Zy `YxZ, Yy ´ ZxY, Xy ` xrX, Ys, Zy ` xrZ, Xs, Yy ´ xrY, Zs, Xyq .

The Levi-Civita connection is metric and, moreover, torsionfree, i.e., TpX, Yq :“ ∇XY´∇YX´ rX, Ys ” 0.
Note that the torsion tensor T can in general only be defined on the tangent bundle and not on an arbitrary vector

bundle E.
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3. SPIN GEOMETRY

Definition 3.1. Let pM, gq be an oriented Riemannian manifold.
(i) A Spin-structure on M is a pair pP, πq consisting of a Spinpnq-principal fibre bundle pP, πP; Spinpnqq over M

and a smooth map π : P Ñ SOpM, gq such that
(a) πSOpMq ˝ π “ πP and
(b) πpp ¨ gq “ πppq ¨λpgq for all p P P and g P Spinpnq with λ : Spinpnq Ñ SOpnq the Lie group homomorphism

from Section 1.3.
In other words, a Spin-structure on M is a λ-reduction of the bundle SOpMq of oriented orthonormal frames of M.
We can summarize properties (a) and (b) by saying that the diagram

Pˆ Spinpnq

πˆλ

��

¨ // P

π

��

πP

""
SOpM, gq ˆ SOpnq ¨ // SOpMq

πSOpnq // M

is commutative.
(ii) Two Spin-structures pP1, π1q and pP2, π2q on M are called equivalent if there exists a Spinpnq-principal fibre

bundle isomorphism Φ : P1 Ñ P2 such that π1 “ π2 ˝Φ.
(iii) If there exists a Spin-structure on a Riemannian manifold pM, gq, we call M spin .

Remark 3.2. Note that two equivalent Spin-structures pP1, π1q and pP2, π2q on M provide isomorphic Spinpnq-
principal fibre bundles P1 and P2. However, the converse is not true. There do exist oriented Riemannian manifolds
pM, gq having two inequivalent Spin-structures pP1, π1q and pP2, π2q such that P1 and P2 are isomorphic as abstract
Spinpnq-principal fibre bundles over M.

Example 3.3. Let M “ Rn. By identifying TxRn with Rn for each x P Rn, we can equip Rn with the Riemannian
metric g given by the Euclidean inner product,

gxpv, wq :“ xv, wy for all x P Rn, v, w P TxRn “ Rn ,

and its standard orientation given by requiring that the canonical basis pe1, . . . , enq of TxRn “ Rn is positively oriented.
The bundle SOpRn, gq of oriented orthonormal frames is trivial, i.e., is given by

SOpRn, gq “ Rn ˆ SOpnq ,

where we have identified an OONB pv1, . . . , vnq of Rn with the matrix A P SOpnq whose i-th column is vi. A Spin-
structure for pRn, gq is now given by pP, πq with

P “ Rn ˆ Spinpnq

and

π : P “ Rn ˆ Spinpnq Ñ Rn ˆ SOpnq “ SOpRn, gq

px, gq ÞÑ px, λpgqq .

Example 3.4. We consider the unit sphere Sn Ď Rn`1 with its round standard metric g, i.e.,

gxpv, wq :“ xv, wy for all x P Sn, v, w P TxSn Ď TxRn`1 “ Rn`1 ,

where x¨, ¨y is the Euclidean inner product. By our identification TxRn`1 “ Rn`1, x P Rn`1, we have

TxSn “ xK “ tv P Rn`1 | xv, xy “ 0u .

The orientation we endow Sn with is defined by requiring any basis pv1, . . . , vnq of TxSn to be oriented if and only if
pv1, . . . , vn, xq is an oriented basis of Rn`1. It follows that for any positively oriented orthonormal basis pv1, . . . , vnq of
TxSn, pv1, . . . , vn, xq is an oriented orthonormal basis of Rn`1. Thus, the bundle SOpSnq is given by

SOpSnq “ SOpn` 1q ,

where we have identified the OONB pv1, . . . , vn, xq of Rn`1 with the matrix A in SOpn ` 1q having v1, . . . , vn, x as
columns, with projection

πSOpSnq : SOpSnq “ SOpn` 1q Ñ Sn

pv1, . . . , vn, xq “ A ÞÑ x “ A ¨ en`1 .
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The right-action of SOpnq on SOpSnq “ SOpn` 1q is given by the right-multiplication of SOpn` 1q on itself precom-
posed with the inclusion

ι : SOpnq Ñ SOpn` 1q

A ÞÑ
ˆ

A 0
0 1

˙

.

Associated with the inclusion ι is an inclusion rι : Spinpnq Ñ Spinpn` 1q, which can be constructed as follows. The
inclusion Rn – Rn ˆ t0u ãÑ Rn`1 induces an inclusion C`n ãÑ C`n`1 (the image of which is the algebra generated by
e1, . . . , en), which, by restriction, induces an inclusion rι : Spinpnq Ñ Spinpn` 1q. It follows from the construction of
the map λ from Section 1.3 that λn`1prιpgqq “ ιpλnpgqq for all g P Spinpnq.

To construct our Spin-structure for Sn we set P :“ Spinpn` 1q. The right-action of Spinpnq on P is given by right-
multiplication of Spinpn ` 1q on itself precomposed with the inclusion rι. We set π :“ λn`1 : P “ Spinpn ` 1q Ñ
SOpn ` 1q “ SOpSnq and define the projection πP : P Ñ Sn which makes P into a principal fibre bundle over Sn

by πP :“ πSOpSnq ˝ λn`1. Now pP, πq is a Spin-structure for Sn. We summarize the situation in two commutative
diagrams:

P “ Spinpn` 1q

λn`1
��

πP“πSOpSnq˝λn`1

))

SOpSnq “ SOpn` 1q

πSOpSnq

��
Sn

Pˆ Spinpnq

λn`1ˆλn

��

¨˝pidˆrιq // P

λn`1
��

SOpSnq ˆ SOpnq
¨˝pidˆιq // SOpSnq

Example 3.5. Let M “ S1 – r0, 2πs{t0, 2πu with the metric it inherits from its embedding into C – R2 and the
counterclockwise orientation. Since in dimension 1 there is only one positively oriented unit-vector in each tangent space,
we see that SOpS1q – S1. Note that SOp1q “ t1u and Spinp1q “ t˘1u “ Z2. The first Spin-structure we define is
P1 :“ S1 ˆZ2 with the obvious projections and right-action of Z2. We call P1 the trivial Spin-structure on S1 . There
is a second Spin-structure on S1. Define P2 :“ r0, 2πs ˆZ2{ „ where p0,˘1q „ p2π,¯1q with projection onto S1

πP2prx, gsq “ x. We call P2 the nontrivial Spin-structure on S1 . The two Spin-structures are inequivalent.

Remark 3.6. Not every Riemannian manifold allows a Spin-structure. Examples are the even-dimensional real projec-
tive spaces RP2m, which are not orientable and so, in particular, not spin. Orientable examples, which are not spin, are
the even-dimensional complex projective spaces CP2m.

It is remarkable that, although the definition of a Spin-structure explicitely references the Riemannian metric, the
existence of a Spin-structure and the number of inequivalent Spin-structures are independent of the metric in the sense
that if a manifold M admits a Spin-structure for one Riemannian metric g, then it does so for every other Riemannian
metric and the number of inequivalent Spin-structures is constant when viewed as a function of the metric. In fact,
even more is true: a manifold is spin if and only if its second Stiefel-Whitney class vanishes and then it admits as many
inequivalent Spin-structures as there are elements in H1pM; Z2q. In particular, being spin is a topological invariant.

For the next definition recall the associated vector bundle construction from Definition 2.20.

Definition 3.7. (i) Let pM, gq be an oriented n-dimensional Riemannian manifold with Spin-structure pP, πq. Let
κn : Spinpnq Ñ UpΣnq be the fundamental Spin-representation. The complex vector bundle

ΣM :“ Pˆκn Σn

is called the spinor bundle of pM, gq and the Spin-structure pP, πq .
(ii) A section s P ΓpM, ΣMq is called a spinor field or, sloppily, a spinor .

Remark 3.8. (i) The spinor bundle ΣM has rank dim Σn “ 2t
n
2 u. Moreover, since κn is a unitary representation it

comes equipped with a canonical bundle metric as described in Proposition 2.23.
(ii) Recall that in case n “ 2m the fundamental spin representation splits into the direct sum κ2m “ κ`2m ‘ κ´2m of the

positive respectively negative half-spin representations κ˘2m : Spinp2mq Ñ UpΣ˘2mq. To this splitting corresponds a
splitting of the spinor bundle (see Remark 2.21)

ΣM “ Σ`M‘ Σ´M ,
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where the vector bundles
Σ˘M :“ Pˆκ˘ Σ˘n

are called the bundles of positive respectively negative half-spinors . The sections s P ΓpM, Σ˘Mq are called
positive respectively negative half-spinors .

Remark 3.9. While Rn is a real vector space, the space of spinors Σn is a complex space. We can view Σn a real vector
space by restricting scalar multiplication to R. This allows us to consider the (real) tensor product Rn b Σn. But note
that Rn b Σn carries a canonical structure as a complex vector space where scalar multiplication with complex numbers
is given by multiplication on the second factor.

The analogous statement applies to the real vector bundle TM, the complex vector bundle ΣM and their tensor product
TMb ΣM.

Definition 3.10. Let pM, gq be an oriented Riemannian manifold with a Spin-structure pP, πq and let ΣM be the
associated spinor bundle. A Clifford multiplication is a vector bundle homormorphism of complex vector bundles

µ : TMb ΣM Ñ ΣM
vb σ ÞÑ v ¨ σ

satisfying

v ¨ pw ¨ σq `w ¨ pv ¨ σq “ ´2gpv, wq ¨ σ for all x P M, v, w P Tx M, σ P ΣMx .

Proposition 3.11. Let pM, gq be a Riemannian spin manifold with spin structure pP, πq and let ΣM be the associated
spinor bundle.

(i) If n is even there exists exactly one Clifford multiplication. If n is odd there exist exactly two Clifford multiplications
which are the negative of each other. They can be distinguished by the action of the complex volume element, i.e., we
have either

ωC
n ¨ σ :“ itpn` 1q{2ue1 ¨ pe2 ¨ p. . . pen ¨ σqqq “ σ for all x P M, σ P ΣMx ,

or
ωC

n ¨ σ “ ´σ for all x P M, σ P ΣMx ,
where pe1, . . . , enq is an OONB of Tx M.

(ii) Any Clifford multiplication satisfies

xv ¨ σ, τy “ ´xσ, v ¨ τy for all x P M, v P Tx M, σ, τ P ΣMx .

Proof. To proof (i), we first note that the tangent bundle TM is associated to the Spin-structure pP, πq via the
representation λ : Spinpnq Ñ SOpnq. More precisely, the vector bundle homomorphism

Pˆλ Rn Ñ TM

rp, px1, . . . , xnq
ts ÞÑ

n
ÿ

i“1

xiπppqi

is an isomorphism. Here, for p P Px we have πppq “ pπppq1, . . . , πppqnq P SOpMqx. Alluding to Remark 2.21
again, it follows that the vector bundle TMb ΣM is associated to P and the representation λb κn : Spinpnq Ñ
GlpRn b Σnq through the isomorphism

Pˆλbκn pR
n b Σnq Ñ TMb ΣM

rp, xb σs ÞÑ
n
ÿ

i“1

xiπppqi b rp, σs .

If rµ : Rn b Σn Ñ Σn is any Clifford multiplication as in Definition 1.52, we define the Clifford multiplication

µ : TMb ΣM – Pˆλbκn pR
n b Σnq Ñ Pˆκn Σn – ΣM

rp, xb σs ÞÑ rp, rµpxb σqs “ rp, x ¨ σs .

We have to check that µ is well-defined, i.e., is independent of the chosen representative. For this, let p, q P Px
and let g P Spinpnq be the unique element such that q “ p ¨ g. Then we have

rp, xb σs “ rp ¨ g, pλb κnqpg´1qpxb σqs “ rq, λpg´1qpxq b κnpg´1qpσqs

and
rp, rµpxb σqs “ rp ¨ g, κnpg´1qprµpxb σqqs “ rq, κnpg´1qprµpxb σqqs .
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From Proposition 1.56 we know that

κnpg´1qprµpxb σqq “ rµppλb κnqpg´1qpxb σqq “ rµpλpg´1qpxq b κnpg´1qpσqq

so that
rp, rµpxb σqs “ rq, κnpg´1qprµpxb σqqs “ rq, rµpλpg´1qpxq b κnpg´1qpσqqs

as required.
All statements now follow from Proposition 1.53 and Corollary 1.54. �

Remark 3.12. (i) In case the dimension n of M is odd, we will always fix the Clifford multiplication for which the
complex volume element acts by ` idΣM.

(ii) We extend the Clifford multiplication to vector and spinor fields, that is, for X P VpMq and ϕ P ΓpM, ΣMq we let
X ¨ ϕ be the spinor field defined by

pX ¨ ϕqx :“ Xx ¨ ϕpxq for all x P M .

All relations holding pointwise then also hold as field equations, e.g., we have

X ¨ pY ¨ ϕq `Y ¨ pX ¨ ϕq “ ´2gpX, Yq ¨ ϕ for all X, Y P VpMq, ϕ P ΓpM, ΣMq .

Theorem 3.13. There exists a metric connection ∇ “ ∇Σ : ΓpM, ΣMq Ñ ΓpM, T˚Mb ΣMq on ΣM satisfying

(3.1) ∇Σ
XpY ¨ ϕq “ ∇XY ¨ ϕ`Y ¨∇Σ

X ϕ for all X, Y P VpMq, ϕ P ΓpM, ΣMq .

The connection ∇Σ is called spinor connection or Levi-Civita connection .

Remark. In fact, ∇Σ is the unique metric connection satisfying (3.1). Unfortunately, we will have to content ourselves
with the existence of ∇.

Proof. Let pP, πq be our Spin-structure with which ΣM is associated.
Step 1: For any local section s : M Ď U Ñ P let pe1, . . . , enq :“ π ˝ s : U Ñ SOpM, gq be the projected local
OONB. For any ϕ P ΓpU, ΣMq, given by ϕ “ rs, vs for some v P C8pU, Σnq, define

∇s
X ϕ “ rs, Xpvqs `

1
4

n
ÿ

i“1

ei ¨∇LC
X ei ¨ ϕ(3.2)

for any X P VpMq. Obviously, ∇s is C-linear with respect to ϕ, C8pU, Cq-linear w.r.t. X and satisfies the Leibniz
rule.

Step 2: We show that (3.2) is independent of the section s. Let s, t be local sections of P, which are, without loss
of generality, defined on the same open set W Ď M. We let σ : W Ñ Spinpnq be the unique smooth map which
satisfies

t “ s ¨ σ

and v, w P C8pW, Σnq such that ϕ “ rs, vs “ rt, ws. Then

rs, vs “ rs ¨ σ, κnpσ
´1qpvqs “ rt, ws .

We consider the first term on the right-hand side of (3.2). We have

Xpwq “ Xpκnpσ
´1qpvqq “ pdpκn ˝ σ´1qXqpvq ` κnpσ

´1qpXpvqq .

Since Spinpnq Ď C`˚n , we have dpLgqX “ g ¨X respectively dpRgqX “ X ¨ g (cf. Example 1.14) and using Exercise
16 we see that

pdpκn ˝ σ´1qXqpvq “ pdκn ˝ d inv ˝ dσXqpvq “ ´κnpdpLσ´1q ˝ dpRg´1qdσXqpvq

“ ´κnpσ
´1pdσXqσ´1qpvq “ ´κnpσ

´1qκnpdσX ¨ σ´1qpvq ,

so that

rt, Xpwqs “ rs ¨ σ,´κnpσ
´1qκnpdσX ¨ σ´1qpvq ` κnpσ

´1qpXpvqqs

“ rs, Xpvqs ´ rs, κnpdσX ¨ σ´1qpvqs .(3.3)
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In order to obtain an expression for dσX ¨ σ´1 we will first calculate λ˚pdσX ¨ σ´1q. Denote A “ pAijq “ λ ˝ σ :
W Ñ SOpnq. Let γ : p´ε, εq Ñ M be a curve with γp0q “ x P W and γ1p0q “ X P Tx M. Then

λ˚pdσX ¨ σ´1q “
d
dt |t“0

λpσ ˝ γptq ¨ σpxq´1q “
d
dt |t“0

pλ ˝ σ ˝ γqptq ¨ λpσpxq´1q

“
d
dt |t“0

A ˝ γptq ¨ At “ dAX ¨ At

“

n
ÿ

k“1

pXpAikqAjkq

“
1
2

n
ÿ

i,j,k“1

XpAikqAjkXei ,ej ,

where the Xei ,ej are the matrices from Exercise 5. By Proposition 1.47 we now have

(3.4) dσX ¨ σ´1 “
1
4

n
ÿ

i,j,k“1

XpAikqAjkei ¨ ej .

Next, we consider the second term on the right-hand side of (3.2). Recall that the tangent bundle is (isomor-
phic to ) the vector bundle Pˆλ Rn associated with the principal fibre bundle P of our Spin-structure and the
representation λ. With pe1, . . . , enq “ π ˝ s and pf1, . . . , fnq “ π ˝ t the projected local OONBs, we have for each
i “ 1, . . . , n,

fi “ rt, eis “ rs ¨ σ, eis “ rs, λpσqeis “ rs, Aeis “

»

–s,
n
ÿ

j“1

Ajiej

fi

fl “

n
ÿ

k“1

Ajirs, ejs

“

n
ÿ

k“1

Ajiej ,

which implies

∇LC
X fi “

n
ÿ

j“1

∇LC
X pAjiejq “

n
ÿ

j“1

XpAjiqej `

n
ÿ

j“1

Aji∇LC
X ej .

Hence,
n
ÿ

i“1

fi ¨∇LC
X fi ¨ ϕ “

ÿ

i,j,k“1

Ajiej ¨
´

XpAkiqek ` Aki∇LC
X ekq

¯

¨ ϕ

“
ÿ

i,j,k“1

XpAkiqAjiej ¨ ek ¨ ϕ`
ÿ

i,j,k“1

Aji Akiej ¨∇LC
X ek ¨ ϕ

“

»

–s, κn

¨

˝

ÿ

i,j,k“1

XpAkiqAjiej ¨ ek

˛

‚pvq

fi

fl`
ÿ

i,j,k“1

Aji Akiej ¨∇LC
X ek ¨ ϕ .

Since A´1 “ At we have
ř

i Aji Aki “ δkl and using (3.4) we obtain

n
ÿ

i“1

fi ¨∇LC
X fi ¨ ϕ “ 4rs, κnpdσX ¨ σ´1qs `

ÿ

i“1

ei ¨∇LC
X ei ¨ ϕ ,

which in turn, using (3.3), implies

rs, Xpvqs `
1
4

n
ÿ

i“1

ei ¨∇LC
X ei ¨ ϕ “ rt, Xpwqs `

1
4

n
ÿ

i“1

fi ¨∇LC
X fi ¨ ϕ .

Step 3: We have to show that our connection is metric and satisfies (3.1). To see that ∇ is metric, let s : U Ñ P
be a local section with pe1, . . . , enq “ π ˝ s : U Ñ SOpM, gq the accompanying OONB, ϕ “ rs, vs, ψ “ rs, ws P
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ΓpU, ΣMq with v, w P C8pU, Σnq and X P Tx M. Then, by definition of the bundle metric, see Proposition 2.23,
we have

Xxϕ, ψy “ Xxv, wy “ xXpvq, wy ` xv, Xpwqy “ xrs, Xpvqs, ψy ` xϕ, rs, Xpwqsy .

Using the skew-symmetry of Clifford multiplication, that the Levi-Civita connection is metric and the Clifford
relations, we see that

xei ¨∇LC
X ei ¨ ϕ, ψy ` xϕ, ei ¨∇LC

X ei ¨ ψy “ xei ¨∇LC
X ei ¨ ϕ`∇LC

X ei ¨ ei ¨ ϕ, ψy

“ ´2gpei,∇LC
X eiqxϕ, ψy ,

which vanishes since
0 “ Xgpei, eiq “ 2gpei,∇LC

X eiq .

Hence,
Xxϕ, ψy “ xrs, Xpvqs, ψy ` xϕ, rs, Xpwqsy “ x∇X ϕ, ψy ` xϕ,∇Xψy .

To see that ∇ satisies (3.1) we let Y “ rs, ys P ΓpU, TMqwith y P C8pU, Rnq. Observe that

Y “ rs, ys “

«

s,
n
ÿ

i“1

yiei

ff

“

n
ÿ

i“1

yirs, eis “

n
ÿ

i“1

gpY, eiqei

and
Y ¨ ϕ “ rs, ys ¨ rs, vs “ rs, κnpyqpvqs .

Thus

(3.5) ∇XpY ¨ ϕq “ rs, Xpκnpyqpvqqs `
1
4

n
ÿ

i“1

ei ¨∇LC
X ei ¨Y ¨ ϕ .

The first term on the right-hand side is

Xpκnpyqpvqq “ Xpκnpyqqpvq ` κnpyqpXpvqq “ κnpXpyqqpvq ` κnpyqpXpvqq

“

n
ÿ

i“1

Xpyiqκnpeiqpvq ` κnpyqpXpvqq “
n
ÿ

i“1

Xpgpei, Yqqκnpeiqpvq ` κnpyqpXpvqq ,

so that

(3.6) rs, Xpκnpyqpvqqs “
n
ÿ

i“1

Xpgpei, Yqqei ¨ ϕ`Y ¨ rs, Xpvqs .

Using the Clifford relations, we see that the second term on the right-hand side of (3.5) is

n
ÿ

i“1

ei ¨∇LC
X ei ¨Y ¨ ϕ “ ´

n
ÿ

i“1

ei ¨Y ¨∇LC
X ei ¨ ϕ´ 2

n
ÿ

i“1

gp∇LC
X ei, Yqei, Yq ¨ ϕ

“

n
ÿ

i“1

Y ¨ ei ¨∇LC
X ei ¨ ϕ` 2

n
ÿ

i“1

gpei, Yq∇LC
X ei ¨ ϕ´ 2

n
ÿ

i“1

gp∇LC
X ei, Yqei ¨ ϕ .

Since the Levi-Civita connection is metric, for each j “ 1, . . . , n we have

n
ÿ

i“1

gpgpei, Yq∇LC
X ei, ejq “

n
ÿ

i“1

gpei, Yqgp∇LC
X ei, ejq “ ´

n
ÿ

i“1

gpei, Yqgpei,∇LC
X ejq “ ´gpY,∇LC

X ejq

“ ´

n
ÿ

i“1

gpY,∇LC
X eiqgpei, ejq “ ´

n
ÿ

i“1

gpgpY,∇LC
X eiqei, ejq ,

which implies

1
4

n
ÿ

i“1

ei ¨∇LC
X ei ¨Y ¨ ϕ “

1
4

Y ¨
n
ÿ

i“1

ei ¨∇LC
X ei ¨ ϕ`

n
ÿ

i“1

gpei, Yq∇LC
X ei ¨ ϕ .
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From this, (3.5) and (3.6) we obtain

∇XpY ¨ ϕq “
n
ÿ

i“1

Xpgpei, Yqqei ¨ ϕ`
n
ÿ

i“1

gpei, Yq∇LC
X ei ¨ ϕ`Y ¨∇X ϕ

“ ∇LC
X

˜

n
ÿ

i“1

gpei, Yqei

¸

¨ ϕ`Y ¨∇X ϕ

“ ∇LC
X Y ¨ ϕ`Y ¨∇X ϕ .

�

Remark 3.14. On any Riemannian manifold pM, gq there are vector bundle isomorphisms

TM
5

Õ
7

T˚M

called musical isomorphisms which are given by the metric, i.e., for any x P M and X P Tx M we have

Tx M Q X ÞÑ X5 P T˚x M

with
X5pYq :“ gxpX, Yq

and
7 “ 5´1 .

Definition 3.15. Let pM, gq be a Riemannian spin manifold with Spin-structure pP, πq, associated spinor bundle ΣM
and Clifford multiplication µ : TMb ΣM Ñ ΣM. The Dirac operator D is the 1st order linear differential operator

D : ΓpM, ΣMq ∇
ÝÑ ΓpM, T˚Mb ΣMq 7bid

ÝÝÝÑ ΓpM, TMb ΣMq
µ
ÝÑ ΓpM, ΣMq .

Proposition 3.16. Let pe1, . . . , enq be a local ONB. Then the Dirac operator is given by

Dϕ “
n
ÿ

i“1

ei ¨∇ei ϕ

for all ϕ P ΓpM, ΣMq. Moreover, we have

Dp f ϕq “ grad f ¨ ϕ` f Dϕ

for all f P C8pM, Cq and ϕ P ΓpM, ΣMq, where grad f :“ pd f q7.

Proof. Let εi “ e5i for all i “ 1, . . . , n. Then

∇ϕ “
n
ÿ

i“1

εi b∇ei ϕ ,

so that

Dϕ “ µ ˝ p7 b idq

˜

n
ÿ

i“1

εi b∇ei ϕ

¸

“ µ

˜

n
ÿ

i“1

ei b∇ei ϕ

¸

“

n
ÿ

i“1

ei ¨∇ei ϕ .

Using the formula we just proved, we see that

Dp f ϕq “
n
ÿ

i“1

ei ¨∇eip f ϕq “
n
ÿ

i“1

ei ¨ peip f qϕ` f∇ei ϕq “
n
ÿ

i“1

eip f qei ¨ ϕ`
n
ÿ

i“1

ei ¨∇ei ϕ “ grad f ¨ ϕ` f Dϕ .

�

Definition 3.17. Let pM, gq be a Riemannian manifold.
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(i) Denote by BpMq the Borel σ-algebra of M, i.e., the smallest σ-algebra containing all open sets of M. We define the
Riemannian measure / volume µ :“ µg on M to be the measure which in every chart pU, xq is given by

dµ :“
b

detpgijqdλ ,

where λ is the Lebesgue-measure in pU, xq and

gij :“ g
´

B

Bxi ,
B

Bxj

¯

for i, j “ 1, . . . , n ,

are the components of the matrix of g associated with the coordinates px1, . . . , xnq.
(ii) Let pE, πE; Vq be any K-vector bundle over M and ϕ P ΓpM, Eq. The support of ϕ is the set

suppϕ :“ tx P M | ϕpxq ‰ 0u .

We say that ϕ is compactly supported if suppϕ is compact and denote the space of all compactly supported sections
by

ΓcpM; Eq :“ tϕ P ΓpM, Eq | suppϕ is compactu .
In the case of E “ TM we additionally introduce the notation

VcpMq :“ ΓcpM, TMq .

(iii) Suppose that pE, πE; Vq comes equipped with a bundle metric x¨, ¨y. We define the L2-inner product p¨, ¨q :“ p¨, ¨qL2

on ΓcpM; Eq by

pϕ, ψqL2 :“
ż

M
xϕ, ψydµg

and the associated L2-norm | ¨ | :“ | ¨ |L2 by

|ϕ|L2 :“
b

pϕ, ϕq .

Remark 3.18. Note that ΓcpM; Eq is in general not complete w.r.t. | ¨ |L2 , i.e., the pair pΓcpM; Eq, p¨, ¨qq is only a
pre-Hilbert space.

Definition 3.19. Let pM, gq be a Riemannian manifold and X P VpMq a vector field. The divergence of X is the
function div X P C8pMq given locally by

div X “
n
ÿ

i“1

gpei,∇ei Xq “ trgp∇Xq ,

where pe1, . . . , enq is a local ONB.

The familiar Divergence Theorem from vector calculus generalizes to Riemannian manifolds and we state
it here without proof.

Theorem 3.20. Let pM, gq be a Riemannian manifold and X P VcpMq. Then
ż

M
div Xdµg “ 0 .

Notation and Remarks 3.21. We denote by TMC the complexification of the tangent bundle . Formally, this is the
complex vector bundle over M given by

TMC “
ď

xPM

pTx MqC

where pTx MqC “ Tx MbR C is the complexification of Tx M. Each element z P pTx MqC can be written as

z “ v` iw with v, w P Tx M .

We denote VC
pcqpMq :“ ΓpcqpM, TMCq and call its elements complex (compactly supported) vector fields . Each element

Z P VCpMq can be written in the form

Z “ V ` iW for suitable V, W P VpMq .

We extend the Levi-Civita connection ∇ complex linearly to a connection of TMC, denoted by the same symbol, and we
do the same with the divergence. The Divergence Theorem is then of course also true for all complex compactly supported
vector fields.
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Proposition 3.22. Let pM, gq be an oriented Riemannian spin manifold with a fixed Spin-structure. Then the Dirac
operator is formally selfadjoint, i.e., we have

pDϕ, ψq “ pϕ, Dψq for all ϕ, ψ P ΓcpM; ΣMq .

Proof. Let p P M and pe1, . . . , enq be an ONB defined in a neighborhood of p with p∇eiqp “ 0. Then at p we
have

xDϕ, ψyp “

n
ÿ

i“1

xei ¨∇ei ϕ, ψyp “ ´

n
ÿ

i“1

x∇ei ϕ, ei ¨ ψy

“ ´

n
ÿ

i“1

`

peiqpxϕ, ei ¨ ψy ´ xϕ,∇ei ei ¨ ψyp ´ xϕ, ei ¨∇ei ψyp
˘

“ ´

n
ÿ

i“1

`

peiqpxϕ, ei ¨ ψy ´ xϕ, ei ¨∇ei ψyp
˘

“ ´

n
ÿ

i“1

peiqpxϕ, ei ¨ ψy ` xϕ, Dψyp .

Define a complex compactly supported vector field X P VC
c pMq by the condition

pgx b idqpXx, Wq “ ´xϕpxq, W ¨ ψpxqyx for all W P Tx M, x P M .

Then

div Xppq “
n
ÿ

i“1

pgb idqp∇ei X, eiqp “

n
ÿ

i“1

`

peiqppgb idqpX, eiq ´ pgb idqpX,∇ei eiqp
˘

“

n
ÿ

i“1

peiqppgb idqpX, eiq “ ´

n
ÿ

i“1

peiqpxϕ, ei ¨ ψy ,

from which we deduce
xDϕ, ψy “ div X` xϕ, Dψy .

The statement of the theorem now follows from the Divergence Theorem. �

Corollary 3.23. Let pM, gq be a compact Riemannian spin manifold with a fixed Spin-structure. Then

ker D “ ker D2 .

Remark 3.24. We call any spinor ϕ P ΓpM, ΣMq with D2 ϕ “ 0 harmonic and in case M is compact, this is equivalent
to Dϕ “ 0.

proof of Corollary 3.23. We only need to show ker D2 Ď ker D. Let ϕ P ker D2, i.e., D2 ϕ “ 0. Then we also have
pD2 ϕ, ϕq “ 0. Hence,

0 “ pD2 ϕ, ϕq “ pDϕ, Dϕq “

ż

M
xDϕ, Dϕydµg .

The integrand is a nonnegative, continuous function. We claim that it must be zero. Assume it is not, i.e., there
is a point p P M such that xDϕ, Dϕyp ą 0. By continuity, there is an open neighborhood of p on which this
function is positive. Since the Riemannian measure is of full support (every open set has positive measure),
the integral would be positive. A contradiction. Hence, xDϕ, Dϕy ” 0 which implies Dϕ “ 0. �

3.1. The Lichnerowicz formula. The goal of this section is to come back to the very first lecture and see that,
in a suitable sense, the square of the Dirac operator is a Laplacian. The corresponding formula is called the
Lichnenrowicz formula (see Theorem 3.31) and it shows that there is an interesting interplay between the
geometry of a manifold and the existence of harmonic spinors, i.e., solutions to the equation D2 ϕ “ 0.

Let pM, gq be a Riemannian manifold. Recall the definition of the Riemannian curvature tensor

RpX, YqZ “ ∇X∇YZ´∇Y∇XZ´∇rX,YsZ ,

the Ricci curvature tensor

RicpX, Yq “
n
ÿ

i“1

gpRpei, XqY, eiq “ trpU ÞÑ RpU, XqYq ,
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and the scalar curvature

scal “
n
ÿ

i“1

Ricpei, eiq “ trgppU, Vq ÞÑ RicpU, Vqq “
n
ÿ

i,j“1

gpRpei, ejqej, eiq .

The Riemannian curvature tensor has the following symmetry properties,

RpX, YqZ “ ´RpY, XqZ ,

gpRpX, YqZ, Wq “ ´gpRpX, YqW, Zq ,

gpRpX, YqZ, Wq “ gpRpZ, WqX, Yq ,

RpX, YqZ` RpY, ZqX` RpZ, XqY “ 0 .

The last equation is 1st Bianchi-identity.
It follows from the symmetry properties of the Riemannian curvature tensor, that the Ricci tensor is sym-

metric, i.e., RicpX, Yq “ ´RicpY, Xq. It thus defines, by duality, a (pointwise) selfadjoint endomorphism field
ric,

gpricpXq, Yq “ RicpX, Yq .

Definition 3.25. Let M be a manifold and pE, πE; Vq a K-vector bundle over M equipped with a connection ∇E :
ΓpM, Eq Ñ ΓpM, T˚Mb Eq. We define the curvature tensor RE of pE,∇Eq by

REpX, Yqϕ “ ∇E
X∇E

Y ϕ´∇E
Y∇E

X ϕ´∇E
rX,Ysϕ for all X, Y P VpMq, ϕ P ΓpM, Eq .

Remark 3.26. A calculation completely analogous to the one for the Riemannian curvature tensor shows that RE is
indeed C8-linear in all three arguments so that it is indeed a tensor, i.e., a section RE P ΓpM, T˚Mb T˚Mb EndpEqq,
and that it is antisymmetric in the first two arguments, i.e., REpX, Yqσ “ ´REpY, Xqσ for all X, Y P Tx M, σ P Ex,
x P M.

Proposition 3.27. Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure pP, πq. Then

RΣMpX, Yqσ “
1
4

n
ÿ

i“1

ei ¨ RpX, Yqei ¨ σ ,

where pe1, . . . , enq is an ONB of the corresponding tangent space.

Proof. Let p P M and let pe1, . . . , enq be a local OONB defined on a neighborhood U of p with p∇eiqp “ 0 for all
i “ 1, . . . , n. Choose a section s : U Ñ P such that π ˝ s “ pe1, . . . , enq. Let X, Y P VpMq, v P C8pU, Σnq and let
ϕ “ rs, vs P ΓpU; ΣMq. Then we have (cmp. the proof of Theorem 3.13, Step 1)

∇Σ
X∇Σ

Y ϕ “ ∇Σ
X

˜

rs, Ypvqs ` 1
4

ÿ

i“1

ei ¨∇Yei ¨ ϕ

¸

“ rs, XpYpvqqs `
n
ÿ

i“1

ei ¨∇Xei ¨ rs, Ypvqs ` 1
4

n
ÿ

i“1

∇Σ
X pei ¨∇Yei ¨ ϕq

“ rs, XpYpvqqs `
n
ÿ

i“1

ei ¨∇Xei ¨ rs, Ypvqs ` 1
4

n
ÿ

i“1

´

∇Xei ¨∇Yei ¨ ϕ` ei ¨∇X∇Yei ¨ ϕ` ei ¨∇Yei ¨∇Σ
X ϕ

¯

.

Analogously, we have

∇Σ
Y∇Σ

X ϕ “ rs, YpXpvqqs `
n
ÿ

i“1

ei ¨∇Yei ¨ rs, Xpvqs ` 1
4

n
ÿ

i“1

´

∇Yei ¨∇Xei ¨ ϕ` ei ¨∇Y∇Xei ¨ ϕ` ei ¨∇Xei ¨∇Σ
Y ϕ

¯

,

and also

∇Σ
rX,Ysϕ “ rs, rX, Yspvqs ` 1

4

n
ÿ

i“1

ei ¨∇rX,Ysei ¨ ϕ ,

so that, at the point p, we have

RΣMpXp, Ypqpϕppqq “ 1
4

n
ÿ

i“1

peiqpRpXp, Ypqpeiqp ¨ ϕppq ,

as claimed. �
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Definition 3.28. Let pM, gq be a Riemannian manifold and pE, πE; Vq a K-vector bundle over M, equipped with
a connection ∇E. The associated Bochner Laplacian , also called the connection Laplacian , is the linear second order
differential operator

∆E : ΓpM, Eq Ñ ΓpE; Mq

ϕ ÞÑ ´

n
ÿ

i“1

´

∇E
ei
∇E

ei
ϕ´∇E

∇ei ei
ϕ
¯

,

where pe1, . . . , enq is a local ONB. In case M is a spin manifold and E “ ΣM is the spinor bundle associated with a
Spin-structure, we call ∆Σ :“ ∆ΣM the spinor Laplacian .

Proposition 3.29. Let pM, gq be a Riemannian manifold and pE, πE; Vq a K-vector bundle with a bundle metric x¨, ¨y
and a metric connection ∇E. Then the associated Bochner Laplacian satisfies

p∆E ϕ, ψq “ p∇E ϕ,∇Eψq for all ϕ, ψ P ΓcpM; Eq .

In particular, ∆E is nonnegative and formally self-adjoint, i.e.,

p∆E ϕ, ϕq ě 0 and p∆E ϕ, ψq “ pϕ, ∆Eψq for all ϕ, ψ P ΓcpM; Eq .

Remark. The expression |∇ϕ|2 has to be read as follows. The Riemannian metric g induces a bundle metric g˚ on T˚M
by

g˚x pα, βq “ gxpα
7, β7q for all α, β P T˚x M, x P M .

The bundle metric g˚ is sometimes called the cometric . Now we can use the tensor product metric x¨, ¨yb on T˚Mb E
which is given on pure tensors by

xαb σ, βb τybx :“ g˚x pα, βqxσ, τyx for all α, β P T˚x M, σ, τ P Ex, x P M .

Then |∇ϕ|2 is the square of the corresponding L2-norm of ∇ϕ.

Proof. As before, we fix a point p P M and choose a local ONB pe1, . . . , enq defined on a neighborhood of p with
p∇eiqp “ 0 for all i “ 1, . . . , n. Then at p we have

x∆E ϕ, ψyp “ ´

n
ÿ

i“1

x∇ei∇ei ϕ, ψyp “ ´

n
ÿ

i“1

´

eix∇E
ei

ϕ, ψy ´ x∇E
ei

ϕ,∇E
ei

ψy
¯

p

“ ´

n
ÿ

i“1

peiqpx∇E
ei

ϕ, ψy `
n
ÿ

i,j“1

gpei, ejqpx∇E
ei

ϕ,∇E
ej

ψyp

“ ´

n
ÿ

i“1

peiqpx∇E
ei

ϕ, ψy `
n
ÿ

i,j“1

g˚pεi, ε jqpx∇E
ei

ϕ,∇E
ej

ψyp

“ ´

n
ÿ

i“1

peiqpx∇E
ei

ϕ, ψy `
n
ÿ

i,j“1

xεi b∇E
ei

ϕ, ε j b∇E
ej

ψyp

“ ´

n
ÿ

i“1

peiqpx∇E
ei

ϕ, ψy ` x∇E ϕ,∇Eψybp .

In case E is a real vector bundle, we define a compactly supported vector field X P VcpMq by

gxpXx, Wq “ ´x∇E
W ϕpxq, ψpxqyx for all W P Tx M, x P M ,

and in case E is complex we substitute gb id for g to define X as a complex compactly supported vector field.
In both cases, a calculation analogous to the one in the proof of Proposition 3.22 shows that

div Xppq “ ´
n
ÿ

i“1

peiqpx∇E
ei

ϕ, ψy .

Hence, it follows from the Divergence Theorem that

p∆E ϕ, ψq “ p∇E ϕ,∇Eψq .
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Nonnegativity now follows by setting ψ “ ϕ and formal selfadjointness of ∆E follows straightforwardly,

p∆E ϕ, ψq “ p∇E ϕ,∇Eψq “ p∇Eψ,∇E ϕq “ p∆Eψ, ϕq “ pϕ, ∆Eψq .

�

Corollary 3.30. In the situation of Proposition 3.29, every ϕ P ΓcpM; Eq which is ∆E-harmonic , i.e., satisfies ∆E ϕ “ 0,
is parallel , i.e., satisfies ∇E ϕ ” 0.

Proof. Let ϕ P ΓcpM; Eq be harmonic. Since ∆E ϕ “ 0, we also have p∆E ϕ, ϕq “ 0. By the last proposition,

0 “ p∆E ϕ, ϕq “ p∇E ϕ,∇E ϕq “

ż

M
x∇E ϕ,∇E ϕydµg .

The same argument as in the proof of Corollary 3.23 shows that ∇E ϕ “ 0. �

Theorem 3.31 (Lichnerowicz formula). Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure. Then
we have

D2 ϕ “ ∆Σ ϕ`
1
4

scal ¨ϕ for all ϕ P ΓpM, ΣMq .

Proof. Let p P M and choose a local ONB pe1, . . . , enqwith p∇eiqp “ 0 for all i “ 1, . . . , n. Then, at p, we have

D2 ϕ “
n
ÿ

i,j“1

ei ¨∇ei

´

ej ¨∇ej ϕ
¯

“

n
ÿ

i,j“1

ei ¨
´

∇ei ej ¨∇ej ϕ` ej ¨∇ei∇ej ϕ
¯

“
ÿ

i,j“1

ei ¨ ej ¨∇ei∇ej ϕ

“ ´

n
ÿ

i“1

∇ei∇ei ϕ`
ÿ

iăj

ei ¨ ej ¨
´

∇ei∇ej ϕ´∇ej∇ei ϕ
¯

.

Since p∇eiqp “ 0 and rei, ejsp “ p∇ei ej ´∇ej eiqp “ 0 (the Levi-Civita connection is, by definition, torsionfree),
this is equal to

´

n
ÿ

i“1

´

∇ei∇ei ϕ´∇∇ei ei ϕ
¯

`
ÿ

iăj

ei ¨ ej ¨
´

∇ei∇ej ϕ´∇ej∇ei ϕ´∇rei ,ejs
ϕ
¯

“∆Σ ϕ`
ÿ

iăj

ei ¨ ej ¨ RΣMpei, ejqϕ “ ∆Σ ϕ`
1
2

n
ÿ

i,j“1

ei ¨ ej ¨ RΣMpei, ejqϕ .

It remains to show that the second term on the right hand side is equal to 1{4 scal ϕ. By Proposition 3.27 this
term is

1
8

n
ÿ

i,j,k“1

ei ¨ ej ¨ ek ¨ Rpei, ejqek ¨ ϕ “
1
8

ÿ

i,j,k,l“1

gpRpei, ejqek, elqei ¨ ej ¨ ek ¨ el ¨ ϕ

“
1
8

n
ÿ

l“1

˜

1
3

ÿ

i,j,k
p.w. dist.

gpRpei, ejqek ` Rpej, ekqei ` Rpek, eiqej, elqei ¨ ej ¨ ek¨

`

n
ÿ

i,j“1

gpRpei, ejqei, elqei ¨ ej ¨ ei ¨ `

n
ÿ

i,j“1

gpRpei, ejqej, elqei ¨ ej ¨ ej ¨

¸

el ¨ ϕ .

By the first Bianchi-identity for the Riemannian curvature tensor, the first sum vanishes and we are left with

1
8

n
ÿ

l“1

¨

˝

n
ÿ

i,j“1

gpRpei, ejqel , eiqej ¨ ei ¨ ei ¨ `

n
ÿ

i,j“1

gpRpej, eiqel , ejqei ¨ ej ¨ ej¨

˛

‚el ¨ ϕ

“´
1
4

n
ÿ

i,l“1

Ricpei, elqei ¨ el ¨ ϕ “ ´
1
4

n
ÿ

i“1

Ricpei, eiqei ¨ ei ¨ ϕ “
1
4

scal ϕ ,

where we have used the symmetry properties of the curvature tensor, the Ricci curvature and the Clifford
relations. �
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Corollary 3.32. Let pM, gq be a connected, compact Riemannian spin manifold with fixed Spin-structure. Assume that
scal ě 0 and that there exists a point p P M such that scalppq ą 0. Then there do not exist any nontrivial harmonic
spinors, i.e., the equation

Dϕ “ 0 , ϕ P ΓpM, ΣMq
has only the trivial solution.

Proof. Let ϕ P ΓpM, ΣMq be a harmonic spinor. Then D2 ϕ “ 0 and so

0 “ pD2 ϕ, ϕq “ p∆Σ ϕ, ϕq ` 1
4 pscal ϕ, ϕq ,

that is,

´|∇ϕ|2 “ ´p∇ϕ,∇ϕq “ ´p∆Σ ϕ, ϕq “ 1
4 pscal ϕ, ϕq “ 1

4

ż

M
scal }ϕ}2dµg .

The right-hand side is nonnegative, so we must have ∇ϕ “ 0. Since the spinor connection is metric, this
implies that }ϕ}2 is constant,

X}ϕ}2 “ Xxϕ, ϕy “ x∇X ϕ, ϕy ` xϕ,∇X ϕy “ 0` 0 for all X P Tx M, x P M .

By assumption scalppq ą 0 which means we must have scal ą 0 on an open neighborhood of p. This implies
}ϕ}2 “ 0 for otherweise the integral on the right hand-side was positive. �

3.2. Special Spinors and Geometry. We constructed the spinor bundle and its covariant derivative using the
metric and the Levi-Civita connection. This means that the geometry of the spinor bundle is closely related
to the geometry of the underlying manifold, a fact which can be seen in the formula for the curvature tensor
of ΣM or in the Lichnerowicz-formula. It comes as no surprise that the existence of spinors satisfying certain
field equations has strong geometric implications.

Definition 3.33. Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure. Then a spinor ϕ P ΓpM, ΣMq
is called parallel if

∇ϕ “ 0 ,
that is, if ∇X ϕ “ 0 for all X P VpMq.

Lemma 3.34. If M is connected and ϕ P ΓpM, ΣMq parallel, then the function }ϕ} is constant.

Proof. We have for every X P VpMq,
X}ϕ}2 “ Xxϕ, ϕy “ x∇X ϕ, ϕy ` xϕ,∇X ϕy “ 0` 0 .

Hence, }ϕ}2 is constant and then so is }ϕ}. �

Theorem 3.35. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. If there exists a
nontrivial parallel spinor ϕ P ΓpM, ΣMq, then pM, gq is Ricci-flat, i.e., Ric “ 0.

Proof. Let ϕ P ΓpM, ΣMq be nontrivial and parallel. By definition of the curvature tensor RΣM, we have

RΣMpX, Yqϕ “ 0 for all X, Y P VpMq .

Fix a point x P M, let pe1, . . . , enq be an ONB of Tx M and X P Tx M. By Exercise 22 we have

0 “
n
ÿ

i“1

ei ¨ RΣM
x pei, Xqϕpxq “

1
2

ricxpXq ¨ ϕpxq .

The previous lemma assures ϕpxq ‰ 0. Hence, ricxpXq “ 0 for all X P Tx M, i.e., ricx “ 0. �

A more general notion than that of a parallel spinor is given in the following definition.

Definition 3.36. Let pM, gq be a Riemannian spin manifold with a fixed spin structure. A spinor ϕ P ΓpM, ΣMq for
which there exists a number ζ P C such that

∇X ϕ “ ζX ¨ ϕ for all X P VpMq
is called a Killing spinor with Killing number ζ .

Remark 3.37. The defining equation for a Killing spinor is in general well overdetermined. Indeed, if M has dimension
n the spinor bundle has rank 2tn{2u. Hence, locally, ∇X ϕ “ ζX ¨ ϕ is a system of 2tn{2u equations in n variables. As we
will see in the following propositions, neccessary conditions for Killing spinors to exist are quite restrictive.
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Proposition 3.38. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure and ϕ P ΓpM, ΣMq
a Killing spinor with Killing number ζ P C. Then

(i) if ϕ is nontrivial, then ϕpxq ‰ 0 for all x P M,
(ii) Dpϕq “ ´nζϕ, i.e., ϕ is an eigenspinor for the Dirac operator with eigenvalue ´nζ.

Proof. (i): Since we already handled the case of parallel spinors, we can assume ζ ‰ 0. Let γ : p´ε, εq Ñ M be
any smooth curve and let ψ : p´ε, εq Q t ÞÑ ϕpγptqq P ΣM. Since ϕ is a Killing spinor we then have

∇
dt

ψptq “ p∇γ1ptqϕqγptq “ ζγ1ptq ¨ ϕpγptqq “ ζγ1ptq ¨ ψptq ,

i.e., ψ satisfies a first order ordinary linear differential equation. By uniqueness of solutions of ODEs, ψp0q “
ϕpγp0qq “ 0 would imply ψ ” 0. Since γ was arbitrary, this in turn implies ϕ ” 0.
(ii): Locally, we have

Dϕ “
n
ÿ

i“1

ei ¨∇ei ϕ “
n
ÿ

i“1

ei ¨ ζei ¨ ϕ “ ´nζϕ .

�

Definition 3.39. Let pM, gq be a Riemannian manifold. A vector field X P VpMq is a Killing (vector) field if

LX g “ 0 ,

where the Lie-derivative on 2-tensors is given by

pLXhqpY, Zq :“ XhpY, Zq ´ hpLXY, Zq ´ hpY,LXZq

for all X, Y, Z P VpMq.

Remark 3.40. The vector field X P VpMq is Killing if and only if

0 “ XgpY, Zq ´ gpLXY, Zq ´ gpY,LXZq “ gp∇XY, Zq ` gpY,∇XZq ´ gprX, Ys, Zq ´ gpY, rX, Zsq

“ gp∇XY, Zq ` gpY,∇XZq ´ gp∇XY´∇YX, Zq ´ gpY,∇XZ´∇ZXq

“ gp∇YX, Zq ` gpY,∇ZXq ,

i.e., if and only if Y ÞÑ ∇YX is a skew-symmetric endomorphism of the tangent bundle.

Remark 3.41. Let pM, gq be a Riemannian manifold and assume for simplicity that M is compact. The diffeomorphism
group DiffpMq of M is an infinite-dimensional (Fréchet-) Lie group and VpMq together with the Lie-bracket r¨, ¨s on
vector fields is its Lie algebra. This can be seen as follows. Suppose we are given a one-parameter group t ÞÑ Φt of
diffeomorphisms Φt of M with Φ0 “ idM. Then p ÞÑ Xp :“ d{dt|t“0Φtppq clearly is a vector field of M. On the other
hand, given any X P VpMq, then, by compactness, X is complete, i.e., for any starting point p P M the flow Φt

Xppq
exists for all time t P R. In particular, t ÞÑ Φt

X is a one-parameter group of diffeomorphisms with Φ0 “ idM.
Inside DiffpMq we have the isometry group

IsompM, gq :“ tΦ P DiffpMq |dΦx : pTx M, gxq Ñ pTΦpxqM, gΦpxqq is an isometry for all x P Mu .

This is a (finite-dimensional) Lie group as in Section 1.1. While for a generic Riemannian metric g on M the isometry
group IsompM, gq will be trivial, there are Riemannian manifolds whose isometry group has dimension ě 1. The most
prominent example is of course pSn, groundq with isometry group IsompSn, groundq “ Opn` 1q. A noncompact example
is the hyperbolic plane pH, ghypq, where H “ tpx, yq P R2 | y ą 0u and ghyp “ 1{y2pdx2 ` dy2q, with isometry group
IsompH, ghypq “ Slp2; Rq acting by Möbius transformations.

A Killing field X is a vector field for which the associated flow Φt
X is a one-parameter group of isometries of pM, gq,

i.e., for each t P R the map M Q p ÞÑ Φt
Xppq P M is an isometry. Thus, the existence of a Killing field X P VpMq on a

Riemannian manifold pM, gq is equivalent to the assertion that the isometry group IsompM, gq has positive dimension.
Killing fields are sometimes called infinitesimal isometries.

A typical Killing field on the round sphere can be obtained by differentiating the one-parameter group of rotations
around a fixed axis. An example of a Killing field on the hyperbolic plane is B

Bx which corresponds to the one-parameter
group of translations along lines parallel to the x-axis.
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Proposition 3.42. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure and ϕ P ΓpM, ΣMq
a Killing spinor with Killing number ζ P R. Then the vector field

X :“
n
ÿ

j“1

ixϕ, ej ¨ ϕyej P VpMq ,

where pe1, . . . , enq is a local ONB, is a (possibly vanishing) Killing field of pM, gq.

Proof. Let p P M and pe1, . . . , enq a local ONB in a neighborhood of p with p∇ejqp “ 0 for all j “ 1, . . . , n. Let
Y P Tp M. Then, at p, we have

∇YX “ i
n
ÿ

j“1

`

Ypxϕ, ej ¨ ϕyqej ` xϕ, ej ¨ ϕy∇Yej
˘

“ i
n
ÿ

j“1

`

x∇Y ϕ, ej ¨ ϕy ` xϕ,∇Ypej ¨ ϕqyq
˘

ej

“ i
n
ÿ

j“1

`

x∇Y ϕ, ej ¨ ϕy ` xϕ,∇Yej ¨ ϕy ` xϕ, ej ¨∇Y ϕyq
˘

ej

“ iζ
n
ÿ

j“1

`

xY ¨ ϕ, ej ϕy ` xϕ, ej ¨Y ¨ ϕyq
˘

ej

“ iζ
n
ÿ

j“1

xϕ, ej ¨Y ¨ ϕ´Y ¨ ej ¨ ϕyej ,

so that

gp∇YX, Zq “ iζ
n
ÿ

j“1

xϕ, ej ¨Y ¨ ϕ´Y ¨ ej ¨ ϕygpej, Zq “ iζ
n
ÿ

j“1

xϕ, gpej, Zqpej ¨Y ¨ ϕ´Y ¨ ej ¨ ϕqy

“ iζxϕ, Z ¨Y ¨ ϕ´Y ¨ Z ¨ ϕy ,

which is skew-symmetric in pY, Zq, i.e., Y ÞÑ ∇YX is a skew-symmetric endomorphism of the tangent bundle
TM. By the last remark, X is a Killing field. �

Proposition 3.43. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. Assume there
exists a Killing spinor ϕ P ΓpM, ΣMq with Killing number ζ P C. Then we have:

(i) ricpXq “ 4pn´ 1qζ2X. In particular, pM, gq is an Einstein manifold with ζ2 “ 1
4

scal
npn´1q and ζ P R or ζ P iR.

(ii) If ζ ‰ 0 then pM, gq is locally irreducible, i.e., no point admits a neighborhood U such that pU, g|Uq is isometric to
a Riemmanian product pV, gVq ˆ pW, gWq.

Proof. By definition of the curvature tensor we have

RΣMpX, Yqϕ “ ∇X∇Y ϕ´∇Y∇X ϕ´∇rX,Ysϕ “ ∇XpζY ¨ ϕq ´∇YpζX ¨ ϕq ´ ζrX, Ysϕ

“ ζ p∇XY ¨ ϕ`Y ¨∇X ϕ´∇YX ¨ ϕ´ X ¨∇Y ϕ´ rX, Ys ¨ ϕq

“ ζ p∇XY´∇YX´ rX, Ysq ϕ` ζ pY ¨ ζX ¨ ϕ´ X ¨ ζY ¨ ϕq

“ ζ2pY ¨ X´ X ¨Yqϕ .

Exercise 22 now gives

ricpXq ¨ ϕ “ ´2
n
ÿ

i“1

ei ¨ RΣMpX, eiqϕ “ ´2ζ2
n
ÿ

i“1

ei ¨ pei ¨ X´ X ¨ eiqϕ “ ´2ζ2
n
ÿ

i“1

pe2
i ¨ X´ ei ¨ X ¨ eiqϕ

“ ´2ζ2
n
ÿ

i“1

pe2
i ¨ X` e2

i ¨ X` 2gpX, eiqeiqϕ “ 4pn´ 1qζ2X ¨ ϕ .
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By Proposition 3.38(i), ϕ is nowhere zero, which implies ricpXq “ 4pn´ 1qζ2X, or, equivalently, RicpX, Yq “
4pn´ 1qζ2gpX, Yq. A straightforward calculation yields

scal “
n
ÿ

i“1

Ricpei, eiq “

n
ÿ

i“1

4pn´ 1qζ2gpei, eiq “ 4npn´ 1qζ2 .

To see (ii) assume U Ď M is open and that pU, g|Uq is isometric to the Riemannian product pV, gVqˆ pW, gWq

by an orientation preserving isometry f . We give pV ˆW, gVˆW “ gV ‘ gWq the Spin-structure induced
by f so that the spinor bundles over U and V ˆW are isomorphic by a vector bundle isomorphism which
preseres bundle metrics and covariant derivatives. We now view ϕ as a spinor on V ˆW. Let px, yq P V ˆW,
X P TxVzt0u, Y P TyWzt0u, so that X ` Y P TxV ‘ TyW – Tpx,yqV ˆW. Then RVˆWpX, YqZ “ 0 for all
Z P TxV ‘ TyW.

From the above we have on the hand

RΣpVˆWqpX, Yqϕpx, yq “
1
4

n
ÿ

i“1

ei ¨ RVˆWpX, Yqei ¨ ϕpx, yq “ 0

and on the other hand

RΣpVˆWqpX, Yqϕpx, yq “ ζ2pY ¨ X´ X ¨Yqϕpx, yq .

Since ζ ‰ 0 and gVˆWpX, Yq “ 0 this implies

X ¨Y ¨ ϕpx, yq “ 0 .

But Clifford multiplication by a nonzero vector is an isomorphism (X ¨ X ¨ ϕpx, yq “ ´}X}2 ϕpx, yq), hence
ϕpx, yq “ 0, which contradicts Proposition 3.38(i). �

Corollary 3.44. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. Assume there exists
a Killing spinor ϕ P ΓpM, ΣMq with Killing number ζ ‰ 0.

(i) If ζ is real and pM, gq complete, then M is compact.
(ii) If ζ is imaginary, M is noncompact.

Proof. By the last proposition we have Ric “ 4pn ´ 1qζ2g. If ζ is real, 4pn ´ 1qζ2 ą 0, and Myers’ theorem
asserts that M is compact.

If ζ is imaginary, we have ζ2 ă 0 and by Proposition 3.38(ii), ϕ is an eigenspinor of D2 with eigenvalue
n2ζ2 ă 0. Assuming M is compact implies

0 ď pDϕ, Dϕq “ pD2 ϕ, ϕq “ n2ζ2pϕ, ϕq ă 0 ,

a contradiction. Hence, M must be noncompact. �

3.3. Some Analytic Properties of the Dirac operator. We recall from Definition 2.12(i)(c) that for any K-vector
bundle E of rank k over a smooth manifold M, there exists for any point x P M an open neighborhood U Ď M
of x and a local frame s “ ps1, . . . , skq : U Ñ Ek, i.e., ps1pyq, . . . , skpyqq is a basis of Ey for all y P U. Thus, we can
express any section ϕ P ΓpU, Eq (pointwise) w.r.t. ps1, . . . , skq, i.e.,

ϕ “
k
ÿ

i“1

ϕisi

with suitable ϕi P C8pU, Kq for all i “ 1, . . . , k.

Definition 3.45. Let M be an n-dimensional manifold and E, F two K-vector bundles over M of rank k and l, respec-
tively. A K-linear map P : ΓpM, Eq Ñ ΓpM, Fq is an m-th (m P N0) order (linear partial) differential operator if

‚ for all ϕ P ΓpM, Eq and for all x P M, pPϕqpxq does not depend on the values of ϕ outside of an arbitrarily small
neighborhood of x,

‚ for any (small enough) chart pU, x “ px1, . . . , xnqq of M, local frames s “ ps1, . . . , skq : U Ñ Ek and t “
pt1, . . . , tlq : U Ñ Fl , there exists, for every α P Nn

0 with |α| :“ α1 ` . . .` αn ď m, a smooth function

Pα : U Ñ Mpl, k; Kq
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such that for all smooth functions ϕ1, . . . , ϕk P C8pU, Kq we have

P
k
ÿ

i“1

ϕisi “

k
ÿ

i“1

l
ÿ

j“1

ÿ

|α|ďm

pPαqji
B|α|ϕi
Bxα

tj ,

and where we require that for all y P U there exists an α with |α| “ m such that

Pαpyq ‰ 0 .

We denote the space of all m-th order linear partial differential operators from E to F by DmpM; E; Fq and write
DmpM; Eq for DmpM; E; Eq.

Example 3.46. Let M be a smooth manifold and E, F two K-vector bundles over M.

(i) Any connection ∇ : ΓpE; Mq Ñ ΓpM, T˚Mb Eq is a 1-st order linear partial differential operator.
(ii) Any vector bundle homomorphism Φ : E Ñ F, extended to a map

Φ : ΓpM, Eq P s ÞÑ px ÞÑ Φ|Ex spxqq P ΓpM, Fq ,

is a 0-th order linear partial differential operator.
(iii) Any Bochner Laplacian ∆E : ΓpM, Eq Ñ ΓpM, Fq associated with a connection ∇E in E is a 2-nd order linear

partial differential operator.

For the next definition, recall the m-fold symmetric tensor product Vdm of a K-vector spaces V, which is the
subspace of Vbm which is invariant w.r.t. the linear maps

Vbm Q v1 b . . .b vm ÞÑ vσp1q b . . .b vσpmq P Vbm , σ P Sm .

Definition 3.47. Let M be a smooth manifold, E, F two K-vector bundles over M and P P DmpM; E; Fq.

(i) The symbol of P is the vector bundle homomorphism σpPq : pT˚Mqdm b E Ñ F defined by

σpPq : pT˚x Mqdm b Ex Q ξdm b e ÞÑ
1

m!
Pp f msqpxq P Fx ,

where s P ΓpM, Eq is any extension of e P Ex and f P C8pMq is such that f pxq “ 0 and d fx “ ξ P T˚x M.
(ii) We call P elliptic if for all x P M and ξ P T˚x Mzt0u, the map

σpPqξ “ σpPqpξdm b ¨q : Ex Ñ Fx

is an isomorphism.
(iii) If we are given a Riemannian metric g on M, and if E “ F and P is of second order (m=2), we call P a

generalized Laplacian or an operator of Laplace type if

σpPqξ “ ´}ξ}2g ¨ idEx

for all x P M and ξ P T˚x M.

Lemma 3.48. The symbol σpPq of P P DmpM; E; Fq is well-defined. In particular, it is independent of s and f . More
precisely, in charts as in Definition 3.45, σpPqξ is given by

ÿ

|α|“m

ξαPα ,

where ξα “ ξα1
1 ¨ . . . ¨ ξαn

n and ξ “
ř

j ξ jdxj.

Proof. Exercise. �

Lemma 3.49. If P P D kpM; E; Fq and Q P D lpM; F; Gq, then Q ˝P P D k`lpM; E; Gq and σpQ ˝Pqξ “ σpQqξ ˝σpPqξ .

Proof. Straightforward using the previous lemma. �

Example 3.50. Let pM, gq be a Riemannian manifold.
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(i) Suppose pM, gq is spin and fix a Spin-structure. Consider the Dirac operator D : ΓpM, ΣMq Ñ ΓpM, ΣMq, which
was defined as the superposition µ ˝ p7b idΣMq ˝∇ of the spinor connection ∇ : ΓpM, ΣMq Ñ ΓpM, T˚MbΣMq,
the tensor product 7 b id : T˚M b ΣM Ñ TM b ΣM of the musical isomorphism and the identity of ΣM and
Clifford multiplication µ : TM b ΣM Ñ ΣM. By Examples 3.46(i) and (ii), ∇ P D1pM; ΣM; T˚M b ΣMq,
7 b id P D0pM; T˚M b ΣM; TM b ΣMq and µ P D0pM; TM b ΣM; ΣMq so that by the last lemma we have
D P D1pM; ΣMq and D2 P D2pM; ΣMq. The symbol of D is given by

σpDqξpeq “
1
1!

Dp f 1 ϕqpxq “ grad fx ¨ ϕpxq ` f pxqDϕpxq “ grad fx ¨ e “ ξ7 ¨ e ,

where f , and ϕ are as in Definition 3.47. Since Clifford multiplication by a nonzero vector is a linear isomorphism,
D is an elliptic operator. Moreover,

σpD2qξpeq “ σpDqξ ˝ σpDqξpeq “ ξ7 ¨ ξ7 ¨ e “ ´}ξ}2e ,

i.e., D2 is a Laplace type operator.
(ii) We consider the Laplace-Beltrami operator ∆ : C8pMq “ ΓpM, MˆRq Ñ C8pMq, ∇ f “ ´div grad f . The

gradient of a function f is given by grad f “ pd f q7, a superposition of the differential and the musical isomorphism.
We argue as in the last example to see that grad P D1pM; R; TMq. From Definition 3.19 and Example 3.46(i), we
see that div P D1pM; TM; Rq so that, by the last lemma, we have ∆ “ ´div ˝ grad P D2pM; Rq. To compute the
symbol of ∆, let x P M, f , h P C8pMq with f pxq “ 0, d fx “ ξ P T˚x M, hpxq “ 1, X P Tx M as well as rX P VpMq
with rXx “ X. Then, by Exercise 20 we have

σpgradqξp1q “
1
1!

gradp f 1hqpxq “ pdp f hqxq7 “ ppd fxqhpxq ` f pxqdhxq
7 “ grad fxhpxq ` f pxqgrad hx

“ ξ7 ,

σpdiv qξpXq “
1
1!

div p f 1
rXqpxq “ gxpgrad fx, Xq ` f pxqdiv rX “ gpgrad fx, Xq “ d fxpXq “ ξpXq ,

so that
σp∆qξp1q “ ´σpdiv qξ ˝ σpgradqξp1q “ ´ξpξ7q “ ´}ξ}2 .

This is the justification for the name generalized Laplacian.

Before plunging into spectral theory, let us recall a few facts from functional analysis which can be looked
up in virtually any textbok covering densely defined operators in Hilbert space.

Let H be a seperable Hilbert space over K “ R, C and A : H Ě DpAq Ñ H a linear operator defined on a
subspace DpAq ĎH , called the domain of A. We denote the inner product of H by p¨, ¨q, which we assume to
be C-linear in the first slot and C-antilinear in the second one.

‚ We call a linear operator B : H Ě DpBq Ñ H an extension of A , denoted A Ď B, if DpAq Ď DpBq and
Av “ Bv for all v P DpAq. We also write A “ B if A Ď B and B Ď A.

‚ We call A densely defined if DpAq ĎH is dense.
‚ A is hermitian if it is formally selfadjoint to itself, i.e., pAv, wq “ pv, Awq for all v, w P DpAq.
‚ If A is densely defined and hermitian, it is symmetric .
‚ The operator A is closed if the graph ΓpAq “ tpx, Txq PH ˆH | x P H u ĎH ˆH is closed.
‚ A is closable if the closure ΓpAq of the graph ΓpAq of A is the graph of an operator A. We call A the

closure of A.
‚ If A is densely defined, the adjoint A˚ of A is the operator A˚ : H Ě DpA˚q ÑH with

DpA˚q :“ tw P H | ` : DpAq Q v ÞÑ pAv, wq P C is a continuous functionalu ,

A˚w :“ z ,

where ` “: p¨, zq (Fréchet-Riesz) and ` : H Ñ C is the continuous extension of ` to H .
‚ We call A selfadjoint if A˚ “ A.
‚ If A is symmetric, then:

– A˚ is densely defined and closed.
– A is closable and A “ A˚˚ Ď A˚.
– For any selfadjoint extension B of A, we have

A Ď A Ď B “ B˚ Ď A˚ .
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– We call A essentially selfadjoint if A posses a unique selfadjoint extension. We then have necces-
sarily A “ A˚.

‚ The resolvent set of A is

ρpAq :“
!

z P K | pA´ z idq is bijective as map from DpAq ÑH and pT´ z idq´1 is continuous
)

and the spectrum of A
specpAq :“ KzρpAq .

For a selfadjoint A we always have specpAq Ď R.
‚ An eigenvalue of A is a number λ P specpAq such that pA ´ λ idq : DpAq Ñ H is not injective.

We call dim kerpA´ λ idq the multiplicity of λ and any v P kerpA´ λ idqzt0u an Eigenvector for the
eigenvalue λ.

‚ If A is selfadjoint and nonnegative , i.e., pAv, vq ě 0 for all v P DpAq, then specpAq Ď r0,8q.

Definition and Remarks 3.51. Let pM, gq be a Riemannian manifold and pE, πE; Vq a K-vector bundle over M,
equipped with a bundle metric.

(i) A measurable section of E is a measurable1 map s : M Ñ E with πE ˝ s “ idM. We call two measurable sections
s, s1 : M Ñ E equivalent if they agree µg-almost everywhere and denote the corresponding equivalence class by rss.

(ii) The space of L2-sections of E is

ΓL2pM; Eq :“ trss | rss is an equivalence class of measurable sections of E with |rss|L2 ă 8u ,

where we extended the the L2-inner product p¨, ¨q “ p¨, ¨qL2 and its norm | ¨ |, initially defined on ΓcpM; Eq, to all
equivalence classes of measurable sections, noting that it is independent of the representatives due to a.e.-equivalence
of the sections. pΓL2pM; Eq, p¨, ¨qL2q is a complete, seperable K-Hilbert space. In case E is the trivial K-vector bundle
E “ MˆK, the corresponding space of L2-sections is just L2

KpMq, the space of (equivalence classes of) K-valued
square-integrable functions.

(iii) We view ΓcpM; Eq as a subspace of ΓL2pM; Eq via the inclusion

ι : ΓcpM; Eq Q f ÞÑ r f s P ΓL2pM; Eq

and note that, using a partition of unity and the usual approximation argument, it is not hard to see that ΓcpM; Eq
is dense in ΓL2pM; Eq.

(iv) Assuming pM, gq to be a Riemannian spin manifold with a fixed Spin-structure and using Proposition 3.22, we see
that the Dirac operator D defined on ΓcpM; ΣMq is a symmetric operator in ΓL2pM; ΣMq.

(v) If the vector bundle E over M comes equipped with a bundle metric and a metric connection ∇E, then by Proposi-
tion 3.29 the associated Bochner-Laplacian ∆E defined on ΓcpM; Eq is a symmetric operator in ΓL2pM; Eq. Simi-
larly, the Laplace-Beltrami operator ∆ “ ´div grad defined on C8c pM; Kq is a symmetric in L2

KpMq by Exercise
20.

(vi) More generally, any P P DmpM; Eq, viewed as an operator in ΓL2pM; Eq with domain DpPq “ ΓcpM; Eq is a
densely defined operator.

Theorem 3.52. Let pM, gq be a complete Riemannian spin manifold with a fixed Spin-structure. Then the Dirac
operator D, initially defined on ΓcpM; ΣMq, is essentially selfadjoint in ΓL2pM; ΣMq. Denoting the closure of D again
by D, we have moreoever

ker D “ ker D2 .

Proof. The original proof by J. A. Wolf is contained in [Fr00]. A considerably shorter proof relying on distribu-
tion theory is given in [LM89]. �

Remark 3.53. The assumption that the manifold pM, gq is complete can i.g. not be dropped. In fact, there are noncom-
plete manifolds for which the Dirac operator does not posses any selfadjoint extension. This is in stark contrast to the
following theorem.

Theorem 3.54. Let pM, gq be a Riemannian manifold and E a K-vector bundle, equipped with a bundle metric and a
metric connection ∇E. Let ∆ be either the Bochner-Laplacian associated with ∇E, seen as an operator in ΓL2pM; Eq with
dense domain ΓcpM; Eq, or the Laplace-Beltra operator in L2

KpMq with dense domain C8c pM; Kq. Then ∆ has a unique,

1w.r.t. the Borel σ-algebras BpMq and BpEq
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minimal2 selfadjoint extension ∆F, called the Friedrichs extension . In case that the manifold is complete, ∆ is essentially
selfadjoint and the Friedrichs extension conincides with the closure of ∆.

We are interested mainly in the situation where the manifold M is closed , i.e., compact and without bound-
ary (we have not dealt with manifolds with boundary so far and we will not do so). Here, the spectral theory
of any essentially selfadjoint elliptic differential operator is completely understood. In particular, we know
the spectral situation of the Dirac operator, the Laplace-Beltrami operator, and any Bochner-Laplacian over a
closed Riemannian manifold.

Theorem 3.55 (see, e.g., [LM89, Chapter III, § 5, Theorem 5.8]). Let pM, gq be a closed Riemannian manifold and E
a K-vector bundle over M, equipped with a bundle metric. Assume P P DmpM; Eq is elliptic and essentially selfadjoint,
and denote the closure of P again with P. Then:

(i) The spectrum specpPq of P is discrete and consists only of eigenvalues. Each eigenvalue has finite multiplicity.
(ii) There exists a complete orthonormal system pϕiqiPI of ΓL2pM; Eq consisting of smooth eigensections of P.

Example 3.56. Let M “ S1 – r0, 2πs{t0, 2πuwith its metric coming from the embedding S1 Ď C – R2 and the trivial
Spin-structure (see Example 3.5) P1 “ S1 ˆZ2. The Clifford algebra over C is given by C`1 “ ta ¨ 1` b ¨ e1 | a, b P Cu,
which is isomorphic to the product algebra C‘C, the isomorphism given by C`1 Q a ¨ 1` b ¨ e1 ÞÑ pa` ib, a´ ibq P
C‘ C. An irreducible representation is thus an algebra homomorphism ρ : C`1 Ñ EndpCq – C, and its restriction
to Spinp1q “ Z2 “ t˘1u is then simply given by multiplication, i.e., κ1 : Spinp1q “ Z2 Q g ÞÑ pC Q x ÞÑ gx P
Cq P EndpΣ1q. Hence, ΣS1 “ P1 ˆκ1 Σ1 “ S1 ˆZ2 ˆκ1 C “ S1 ˆC, the trivial vector bundle with fibre C and its
sections are just C-valued functions. Clifford multiplication by e1 satisfies e2

1 “ ´1, but Σ1 “ C, so e1 is either`i or ´i.
Recall that in odd dimensions, we always choose Clifford multiplication such that multiplication by the volume element
acts as the identity. Hence, 1 “ ω1 “ i

1`1
2 e1 “ ie1, which means e1 “ ´i. It follows that, w.r.t. the coordinate chart

p0, 2πq Q t ÞÑ eit P S1, the Dirac operator is given by ´i d
dt . For k P Z, we consider the smooth 2π-periodic function

ϕk : p0, 2πq Q t ÞÑ eikt P C. We have

Dϕkptq “ ´i
d
dt

eikt “ ´iikeikt “ kϕkptq .

Moreover, from Fourier analysis we know that pϕkqkPZ is a complete orthonormal system of L2
CpS

1q. By the last theorem,
part (ii), we have found all the eigenvalues of D, namely, specpDq “ Z, and each k P Z has multiplicity 1.

Exercise 3.57. Compute the spectrum of the Dirac operator on S1 equipped with the nontrivial Spin-structure. Compare
this with the above example.

Next, we are going to compute the spectrum of the Dirac operator on the round sphere pSn, groundq, n ě 2.
This was first done by S. Sulanke in her Ph.D.-thesis. We follow an approach taken by C. Bär [Ba96] for which
we will first need the spectrum of the Laplace-Beltrami operator on the sphere, but which has the advantage
that it is elementary.

Theorem 3.58. The eigenvalues of the Laplace-Beltrami operator ∆ on pSn, groundq are kpn ` k ´ 1q, k P N0, with
corresponding multiplicity mk :“

`n`k´1
k

˘ n`2k´1
n`k´1 .

Sketch of the proof. We denote by ∆Sn
the Laplacian on pSn, groundq and by ∆Rn`1

the one on pRn`1, gEuklq.

Step 1: One proves that for each f P C8pRn`1q, one has

p∆Rn`1
f q|Sn “ ∆Sn

p f|Snq ´ NpN f q ´ nN f ,

where N P VpSnq is the outward-pointing unit normal vector field to Sn, N : Sn Q x ÞÑ x P pTxSnqK Ď Rn`1.
One does so by using

∇Rn`1

X Y “ ∇Sn

X Y´ xX, YyN
and

∆ “ ´trg∇d f .

Step 2: Let f P C8pRn`1q be a homogeneous, harmonic (∆Rn`1
f “ 0) polynomial of degree k, k P N0. By the

above formula we have

∆Sn
p f|Snq “ p∆Rn`1

f q|Sn ` NpN f q ` nN f “ 0` kpk´ 1q ` nk “ kpn` k´ 1q .

2If A is any selfadjoint extension of ∆, then ∆F Ď A
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Step 3: Denote by Pk the space of homogeneous polynomials of degree k on Rn`1 and let Hk Ď Pk be the
subspace of harmonic polynomials. We let Pk :“ t f|Sn | f P Pku and Hk :“ t f|Sn | f P Hku, the sets obtained
by restricting the elements of Pk resp. Hk to Sn. Denoting by r the radial coordinate on Rn`1, one proves the
decompositions

Pk “

tk{2u
à

j“0
r2jHk´2j ,

Pk “

tk{2u
à

j“0
Hk´2j ,

which shows that dim Hk “ dim Pk ´ dim Pk´2 “
`n`k

k
˘

´
`n`k´2

k´2

˘

“
`n`k´1

k
˘ n`2k´1

n`k´1 .

Step 4: Since Sn is compact,
À

kě0 Pk is dense in C0pSnq (w.r.t. uniform convergence), which in turn is dense in
L2pSnq. Each Pk is a direct sum of Eigenspaces of ∆Sn

by the previous two steps. Hence, we have accounted
for all the eigenvalues of ∆Sn

. �

We will now compute the spectrum of the Dirac operator on the round sphere. Recall the Spin-structure on
pSn, groundq that we constructued in Example 3.4 and recall that, because the sphere is simply-connected, it is the
only Spin-structure on Sn.

On the sphere, we consider for ζ P t˘1{2u the connection ∇ζ : ΓpM, ΣMq Ñ ΓpM, T˚Mb ΣMq defined by

∇ζ
X ϕ :“ ∇X ϕ´ ζX ¨ ϕ .(3.7)

We also consider the Bochner-Laplacian ∆ζ associated with ∇ζ .

Lemma 3.59. One has the Weitzenböck formula

pD` ζq2 “ ∆ζ `
1
4
pn´ 1q2 .

Proof. Let p P Sn and pe1, . . . , enq a local ONB around p with p∇ejqp “ 0 for all j “ 1, . . . , n. At p we obtain

pD` ζq2 ϕ´ ∆ζ ϕ “

˜

n
ÿ

i“1

ei ¨∇ei ` ζ

¸

¨

˝

n
ÿ

j“1

ej ¨∇ej ϕ` ζϕ

˛

‚´

n
ÿ

i“1

∇ζ
ei∇

ζ
ei ϕ

“

n
ÿ

i,j“1

ei ¨ ej ¨∇ei∇ej ϕ` 2ζDϕ` ζ2 ϕ`
n
ÿ

i“1

`

∇ei ´ ζei
˘ `

∇ei ϕ´ ζei ¨ ϕ
˘

“ ´

n
ÿ

i“1

∇ei∇ei ϕ`
ÿ

1ďiăjďn

ei ¨ ejRΣSn
pei, ejqϕ` 2ζDϕ`

1
4

ϕ`
n
ÿ

i“1

∇ei∇ei ϕ´ 2ζDϕ´
1
4

nϕ .

Since the round sphere has constant sectional curvature 1, the Riemannian curvature tensor satisfies RpX, YqZ “
xY, ZyX ´ xX, ZyY, which implies by Proposition 3.27 that RΣSn

pX, Yq “ 1{4pY ¨ X ´ X ¨Yq. Thus, the above is
equal to

1
4

ÿ

1ďiăjďn

ei ¨ ej ¨ pej ¨ ei ´ ei ¨ ejq ¨ ϕ´
1
4
pn´ 1qϕ

“
1
4

npn´ 1qϕ´
1
4
pn´ 1qϕ

“
1
4
pn´ 1q2 ϕ .

�

Recall from Exercise 23(b) that R∇ζ
” 0. Together with the fact that Sn is simply-connected, this implies

that the spinor bundle ΣSn can be trivialized by ∇ζ-parallel spinors, i.e., there exist 2tn{2u pointwise linearly
independent Killing-spinors ψ1, . . . , ψ2tn{2u P ΓpSn, ΣSnqwith Killing number ζ.

Denote the eigenvalues of the Laplace-Beltrami operator ∆ on Sn by λk, k P N0, where we enumerate the
eigenvalues according to their finite multiplicity, and let t fkukPN0 be a corresponding complete orthogonal sys-

tem of Eigenfunctions of ∆ for L2
RpS

nq. Then t fkψlu
l“1,...,2tn{2u

kPN0
is a complete orthogonal system of ΓL2pSn, ΣSnq.
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Lemma 3.60. We have

pD` ζq2p fkψlq “
´

λk `
pn´1q2

4

¯

fkψl

for all k P N0, l “ 1, . . . , 2tn{2u. In particular, the eigenvalues of pD ` ζq2 are kpn` k´ 1q ` pn´ 1q2{4, k P N0, with
corresponding multiplicity 2tn{2umk.

Proof. By the last lemma, we have

pD` ζq2p fkψlq “
´

∆ζ` 1
4 pn´1q2

¯

p fkψlq “ ∆ζp fkψlq `
1
4
pn´ 1q2 fkψl .

Since ψl is ∇ζ-parallel, it is ∆ζ-harmonic, which means

∆ζp fkψlq “ p∆ fkqψl “ λk fkψl .

�

Theorem 3.61. The eigenvalues of the Dirac operator D on the round sphere Sn, n ě 2, are ˘
` n

2 ` k
˘

, k P N0, with
corresponding multiplicity 2tn{2u

`n`k´1
k

˘

.

Proof. We begin our proof with a general remark. If an operator A satisfies A2u “ ν2u for some number ν and
a nonzero vector u, then the vectors v˘ :“ ˘νu` Au satisfy

Av˘ “ ˘νAu` A2u “ ˘νAu` ν2u “ νp˘Au` νuq “ ˘νv˘ ,

i.e., if v˘ is nonzero, it is an Eigenvector of A to the eigenvalue ˘ν.
In the case at hand, A “ D ` ζ, ν “ ´ζpn ´ 1q and u “ f0ψl for some l P t1, . . . , 2tn{2uu. Since the first

eigenvalue λ0 of ∆ is always 0, we can assume f0 ” 13. Then

v` “ ´ζpn´ 1qψl ` pD` ζqψl “ ´ζpn´ 1qψl ´ nζψl ` ζψl “ ´2ζpn´ 1qψl ‰ 0 .

Thus, ´ζpn ´ 1q is an eigenvalue of D ` ζ and since we can choose l freely its multiplicity is at least 2tn{2u.
Because the multiplicity of the eigenvalue pn´ 1q2{4 of pD` ζq2 is exactly 2tn{2u, the eigenvalue ´ζpn´ 1q of
D` ζ has multiplicity precisely 2tn{2u. Expressed differently, the Dirac operator has the two eigenvalues ˘n{2,
each with multiplicity 2tn{2u.

Let us come to the case u “ fkψl with k ě 1. Then

ν “

c

kpn` k´ 1q `
1
4
pn´ 1q2 “ k`

n´ 1
2

,

meaning that D also has the eigenvalues ´ζ ˘ pk` pn´ 1q{2q, k P N. It remains to determine the multiplicities of
these eigenvalues. Recall that we may choose ζ “ ´1{2 or ζ “ 1{2 and we will start with ζ “ ´1{2. We introduce
the notation

ν`k “
n
2
` k , k P N0 ,

ν`
´k “ 1´

n
2
´ k , k P N .

We already determined the multiplicity of ν`0 , namely mpν`0 q “ 2tn{2u. From the last lemma, we know that
mpν`k q `mpν`

´kq “ 2tn{2umk.
For ζ “ `1{2 we use the notation

ν´k “ ´
n
2
´ k , k P N0 ,

ν´
´k “ ´1`

n
2
` k , k P N ,

for which we have analogously to the above mpν´0 q “ 2tn{2u and mpν´k q `mpν´
´kq “ 2tn{2umk.

We will now show that mpν`k q “ mpν´k q “ 2tn{2u
`n`k´1

k
˘

for all k P N0.

3On a compact boundaryless manifold, the first eigenvalue of ∆ is always zero, has multiplicity one, and the corresponding eigenspace
is spanned by the constant functions.
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For k “ 0 we have already shown this. Let us assume that the statement is true for some k P N0. Then

mpν˘k`1q “ 2tn{2umk`1 ´mpν˘
´pk`1qq “ 2tn{2umk`1 ´mpν¯k q

“ 2tn{2u

ˆˆ

n` k
k` 1

˙

n` 2k` 1
n` k

´

ˆ

n` k´ 1
k

˙˙

“ 2tn{2u

ˆ

n` k
k` 1

˙

,

which was to be shown. �

Remark 3.62. Our next goal is an eigenvalue estimate for the Dirac operator. Since the spinor Laplacian is a nonnegative
operator, the Lichnerowicz formula tells us that any eigenvalue λ of the Dirac operator on a closed Riemannian manifold
pM, gq satisfies λ2 ě

scal0
4 , where scal0 :“ infxPM scalpxq. Indeed, let λ be an eigenvalue of D with a corresponding

L2-normalized smooth eigenspinor ϕ P ΓpM, ΣMq. On the one hand, we have

pD2 ϕ, ϕq “ λ2pϕ, ϕq “ λ2 ,

and on the other hand
pD2 ϕ, ϕq “ p∆ϕ, ϕq `

´

1
4 scal ϕ, ϕ

¯

ě 1
4 scal0pϕ, ϕq “ 1

4 scal0 .

As the next theorem shows, this inequality is not sharp and we can do better.

Theorem 3.63 (Friedich’s inequality). Let pMn, gq be closed Riemannian spin manifold with fixed Spin-structure.
Then every eigenvalue λ of the Dirac operator D satisfies

λ2 ě
n

n´ 1
scal0

4
.

Moreover, if λ “ ˘ 1
2

b

n
n´1 scal0 is an eigenvalue of the Dirac operator with corresponding eigenspinor ϕ, then ϕ is a

Killing spinor with Killing number ¯ 1
2

b

1
npn´1q scal0. In particular, the scalar curvature is constant.

Remark 3.64. Friedrich’s inequality is sharp. Indeed, equality is attained on, e.g., the sphere where we have scal0 “
scal “ npn´ 1q.

Proof of Theorem 3.63. Recall the twisted connection ∇ζ from (3.7). For a spinor ϕ P ΓpM, ΣMqwe have

x∇´ζ ϕ,∇´ζ ϕy “
n
ÿ

j“1

x∇´ζ
ej ϕ,∇´ζ

ej ϕy “
n
ÿ

j“1

x∇ej ϕ` ζej ¨ ϕ,∇ej ϕ` ζej ¨ ϕy

“

n
ÿ

j“1

´

x∇ej ϕ,∇ej ϕy ` ζxej ¨ ϕ,∇ej ϕy ` ζx∇ej ϕ, ej ¨ ϕy ` ζ2xej ¨ ϕ, ej ¨ ϕy
¯

“

n
ÿ

j“1

´

x∇ej ϕ,∇ej ϕy ´ ζxϕ, ej ¨∇ej ϕy ´ ζxej ¨∇ej ϕ, ϕy ` ζ2xϕ, ϕy
¯

“ x∇ϕ,∇ϕy ´ ζxϕ, Dϕy ´ ζxDϕ, ϕy ` nζ2xϕ, ϕy .

Integrating this yields

p∇´ζ ϕ,∇´ζ ϕq “ p∇ϕ,∇ϕq ´ 2ζpDϕ, ϕq ` nζ2pϕ, ϕq .(3.8)

We also have

pD´ ζq2 ϕ “ pD´ ζqpDϕ´ ζϕq “ D2 ϕ´ 2ζDϕ` ζ2Dϕ .

Integrating and using the Lichnerowicz formula and Proposition 3.29 we obtain

ppD´ ζq2 ϕ, ϕq “ pD2 ϕ´ 2ζDϕ` ζ2 ϕ, ϕq “ p∆ϕ, ϕq ` pp1{4 scal`ζ2qϕ, ϕq ´ 2ζpDϕ, ϕq

“ p∇ϕ,∇ϕq ` pp1{4 scal`ζ2qϕ, ϕq ´ 2ζpDϕ, ϕq .
(3.9)

Let λ be an eigenvalue of D with corresponding eigenspinor ϕ P ΓpM, ΣMq. Set ζ :“ λ{n. From (3.8) we obtain

p∇´λ{n ϕ,∇´λ{n ϕq “ p∇ϕ,∇ϕq ´ 2
λ2

n
pϕ, ϕq ` n

λ2

n2 pϕ, ϕq “ p∇ϕ,∇ϕq ´
λ2

n
pϕ, ϕq .
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Combining this with (3.9) yields
ˆ

λ´
λ

n

˙2
pϕ, ϕq “ ppD´ λ{nq2 ϕ, ϕq “ p∇ϕ,∇ϕq `

ˆˆ

1
4

scal`
λ2

n2

˙

ϕ, ϕ

˙

´ 2
λ2

n
pϕ, ϕq

“ p∇λ{n ϕ,∇λ{n ϕq `

ˆ

λ2

n2 ´
λ2

n

˙

pϕ, ϕq `
1
4
pscal ϕ, ϕq .

Substracting λ2p1´ nq{n2pϕ, ϕq from both sides we obtain

λ2 n´ 1
n
pϕ, ϕq “ p∇λ{n ϕ,∇λ{n ϕq `

1
4
pscal ϕ, ϕq ě

scal0
4
pϕ, ϕq ,(3.10)

which is the desired inequality.
Now assume that λ “ ˘ 1

2

b

n
n´1 scal0. Then we have equality in (3.10), which implies ∇λ{n ϕ “ 0, i.e.,

ϕ is a Killing spinor with Killing number λ{n “ ¯ 1
2

b

1
npn´1q scal0 and the scalar curvature is automatically

constant. �

3.4. Conformal Covariance and Twistors. In this section we will show that the Dirac operator is conformally
covariant, i.e., it transforms nicely w.r.t. a conformal change of the metric. Then, we introduce so called twistor
spinors. The space of twistor spinors can be seen as a conformally invariant extension of the space of Killing
spinors. The final result of this section will be that in the presence of twistor spinors, we can always con-
formally change the metric in such a way that the new metric is Einstein. Roger Penrose introduced twistor
spinors in his work on general relativity, for which he was awarded the Nobel prize in physics in 2020.

Definition 3.65. Let M be a smooth manifold. Two Riemannian metrics g and h on M are called conformal if there
exists a function u P C8pMq such that h “ e2ug.

Remark 3.66. A conformal change of the metric leads to a change of lengths of tangent vectors. Angles, on the other
hand, are preserved.

Proposition 3.67. Let pM, gq be an oriented Riemannian manifold with a Spin-structure pP, πgq. Let u P C8pMq and
consider the conformal metric h “ e2ug. Define

ψu :“ ψ : SOpM, hq Q vx “ pv1, . . . , vnq ÞÑ peupxqv1, . . . , eupxqvnq P SOpM, gq ,

Q :“ P, πQ :“ πP, Ψu :“ Ψ : Q Q q ÞÑ q P P and πh :“ ψ´1 ˝ πg ˝ Ψ. Then, ψ is an SOpnq-principal fibre
bundle isomorphism, pQ, πQ; Spinpnqq is a Spinpnq-principal fibre bundle over M, Ψ : Q Ñ P is a Spinpnq-principal
fibre bundle isomorphism and pQ, πhq is a Spin-structure on pM, hq. The situation can be visualized by the commutative
diagram

Q

πh
��

Ψu //

πQ

77

P

πg

��
πP

__

SOpM, hq
ψu //

&&

SOpM, gq

��
M

Proof. The map ψ is obviously a smooth bijection preserving fibres over M. Its SOpnq-equivariance is a straight-
forward calculation.

As an abstract Spinpnq-principal fibre bundle, pQ, πQ; Spinpnqq is just pP, πP; Spinpnqq and Ψ is the identity,
so we only need to prove that it is a Spin-structure for pM, hq. Let q P Q and a P Spinpnq. Then

πhpq ¨ aq “ ψ´1 ˝ πg ˝Ψpq ¨ aq “ ψ´1 ˝ πgpq ¨ aq “ ψ´1pπgpqq ¨ λpaqq “ ψ´1pπgpqqq ¨ λpaq “ πhpqq ¨ λpaq .

�
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Corollary 3.68. In the situation of Proposition 3.67, denote the spinor bundles associated with the Spin-structures
pP, πgq over pM, gq and pQ, πhq over pM, hq by Σg M and Σh M, respectively. Then the principal fibre bundle isomor-
phism Ψu induces a vector bundle isomorphism Ψu : Σh M Ñ Σg M which preserves bundle metrics and satisfies

Ψupv ¨ σq “ eupxqv ¨Ψupσq

for all v P Tx M, σ P Σh Mx, x P M, where ¨ on the left-hand side denotes Clifford multiplication in Σh M and in Σg M on
the right-hand side.

Proof. Since the abstract Spinpnq-bundles of the Spin-structures are identical, the induced isomorphism on the
spinor bundles is simply given by Ψu : Σh M Q rp, σs ÞÑ rp, σs P Σg M. The formula relating the Clifford
multiplications is a straightforward consequence of the definition of Clifford multiplication (cmp. proof of
Proposition 3.11). �

Remark 3.69. The following formula relating the Levi-Civita connections ∇g and ∇h of the conformal Riemannian
metrics g resp. h with h “ e2ug is well-known, see, e.g., [Be87]:

∇h
XY “ ∇g

XY` dupXqY` dupYqX´ gpX, Yqgradg u for all X, Y P VpMq .

Proposition 3.70. In the situation of Proposition 3.67, denote the spinor connections in the spinor bundles Σg M and
Σh M by ∇g and ∇h, respectively. Then we have

∇h
X “ Ψ´1

u ˝

ˆ

∇g
X ´

1
2

X ¨ gradg u´
1
2

Xpuq
˙

˝Ψu for all X P VpMq .

Proof. Let s : M Ě U Ñ P “ Q be a local section and πg ˝ s “ pe1, . . . , enq : U Ñ SOpM, gq, πh ˝ s “ pv1, . . . , vnq :
U Ñ SOpM, hq the associated loca g- resp. h-OONBs. Note that we have vj “ e´uej for all j “ 1, . . . , n. Let
w P C8pU, Σnq and ϕ “ rs, ws P ΓpU, Σh Mq. Then for every X P ΓpU, TMqwe have

∇h
X ϕ “ rs, Xpwqs `

1
4

n
ÿ

j“1

vj ¨∇h
Xvj ¨ ϕ “ rs, Xpwqs `

1
4

e´u
n
ÿ

j“1

ej ¨∇h
Xpe

´uejq ¨ ϕ

“ rs, Xpwqs `
1
4

e´u
n
ÿ

j“1

ej ¨
´

´Xpuqe´uej ` e´u∇h
Xej

¯

¨ ϕ “ rs, Xpwqs `
1
4

e´2u

¨

˝nXpuq `
n
ÿ

j“1

ej ¨∇h
Xej

˛

‚¨ ϕ

“ rs, Xpwqs `
1
4

e´2u

¨

˝nXpuq `
n
ÿ

j“1

ej ¨
´

∇g
Xej ` dupXqej ` dupejqX´ gpX, ejqgradg u

¯

˛

‚¨ ϕ

“ rs, Xpwqs `
1
4

e´2u

¨

˝nXpuq `
n
ÿ

j“1

ej ¨∇
g
Xej ´ nXpuq ` gradg u ¨ X´ X ¨ gradg u

˛

‚¨ ϕ

“ rs, Xpwqs `
1
4

e´2u

¨

˝

n
ÿ

j“1

ej ¨∇
g
Xej ´ 2X ¨ gradg u´ 2hpgradg u, Xq

˛

‚¨ ϕ ,

so that, using the formula in the above corollary, we obtain

∇h
X ϕ “ Ψ´1

u ˝Ψu

¨

˝rs, Xpwqs `
1
4

e´2u

¨

˝

n
ÿ

j“1

ej ¨∇
g
Xej ´ 2X ¨ gradg u´ 2hpgradg u, Xq

˛

‚¨ ϕ

˛

‚

“ Ψ´1
u

¨

˝rs, Xpwqs `
1
4

e´2ue2u
n
ÿ

j“1

ej ¨∇
g
Xej ´

1
2

e´2ue2uX ¨ gradg u´
1
2

e´2uhpgradg u, Xq

˛

‚Ψu ˝ ϕ

“ Ψ´1
u

ˆ

∇g
X ´

1
2

X ¨ gradg u´
1
2

Xpuq
˙

Ψu ˝ ϕ .

�

Corollary 3.71. Denoting the Dirac operators acting on sections of Σg M and Σh M by Dg and Dh, respectively, we
have

Dh “ e´
n`1

2 uΨ´1
u ˝Dg ˝

´

e
n´1

2 uΨu

¯

.
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Proof. By the last proposition, we have

Dh “

n
ÿ

j“1

vj ¨∇h
vj
“

n
ÿ

j“1

vj ¨Ψ´1
u

ˆ

∇g
vj ´

1
2

vj ¨ gradg u´
1
2

vjpuq
˙

˝Ψu

“ euΨ´1
u

¨

˝

n
ÿ

j“1

vj ¨∇
g
vj ´

1
2

n
ÿ

j“1

vj ¨ vj ¨ gradg u´
1
2

n
ÿ

j“1

vj ¨ vjpuq

˛

‚˝Ψu

“ euΨ´1
u

¨

˝e´2u
n
ÿ

j“1

ej ¨∇
g
ej ` e´2u n

2
¨ gradg u´ e´2u 1

2
gradg u

˛

‚˝Ψu

“ e´uΨ´1
u

ˆ

Dg `
n´ 1

2
gradg u

˙

˝Ψu .

Note that we have for every α P R,

Dgpeαu ϕq “ grad eαu ¨ ϕ` eαuDg ϕ “ eαu `α grad u ¨ ϕ`Dg ϕ
˘

.

Setting α “ n´1
2 yields the claimed formula. �

Lemma 3.72. Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure. Consider the vector bundle

ker µ :“
ď

xPM

ker µx Ď TMb ΣM .

Then

P : TMb ΣM Ñ TMb ΣM

vb σ ÞÑ vb σ`
1
n

n
ÿ

j“1

ej b ej ¨ v ¨ σ ,

where pe1, . . . , enq is an ONB of the appropriate tangent space, is an orthogonal projection with image im P “ ker µ.

Proof. Exercise. �

Definition 3.73. Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure. We call T :“ P ˝ p7b idΣMq ˝

∇ : ΓpM; ΣMq Ñ ΓpM; TM b ΣMq the twistor operator . Any spinor ϕ P ΓpM; ΣMq with ϕ P ker T is called a
twistor spinor or simply twistor .

Lemma 3.74. We have ϕ P ker T if and only if

∇X ϕ`
1
n

X ¨Dϕ “ 0 for all X P VpMq .

Proof. Let pe1, . . . , enq be a local ONB with g-dual ONB pε1, . . . , εnq. Then

7 b idΣM ˝∇ϕ “ 7b idΣM

¨

˝

n
ÿ

j“1

ε j b∇ej ϕ

˛

‚“

n
ÿ

j“1

ej b∇ej ϕ

so that

T pϕq “
n
ÿ

j“1

ej b∇ej ϕ`
1
n

n
ÿ

i,j“1

ei b ei ¨ ej ¨∇ej ϕ “
n
ÿ

j“1

ej b∇ej ϕ`
1
n

n
ÿ

j“1

ej b ej ¨Dϕ

“

n
ÿ

j“1

ej b

ˆ

∇ej ϕ`
1
n

ej ¨Dϕ

˙

“ 0

if and only if

∇ej ϕ`
1
n

ej ¨Dϕ “ 0 for all j “ 1, . . . , n ,

which is obviously equivalent to the claim of the lemma. �
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Proposition 3.75. In the situation of Proposition 3.67, denote by Tg and Th the twistor operators associated with the
spinor bundles Σg M and Σh M, respectively. Then we have

Thpϕq “ idTMbΨ´1
u pe´

u
2 Tgpe´

u
2 Ψu ˝ ϕqq for all ϕ P ΓpM; Σh Mq .

In particular, ϕ P ΓpM; Σh Mq is a twistor spinor if and only if e´
u
2 Ψu ˝ ϕ P ΓpM; Σg Mq is a twistor spinor.

Proof. Straightforward computation using Proposition 3.70, Corollary 3.71 and Lemma 3.74. �

Proposition 3.76. Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure. If ϕ P ΓpM; ΣMq is a twistor,
then

∇XDϕ “
n

2pn´ 2q

ˆ

scal
2pn´ 1q

X´ ricpXq
˙

¨ ϕ for all X P VpMq .

Proof. Exercise. �

Proposition 3.77. Let pM, gq be a Riemannian spin manifold with a fixed Spin-structure. Let K : TM Q X ÞÑ

1
n´2

´

scal
2pn´1qX´ ricpXq

¯

P TM. Consider the complex vector bundle S :“ ΣM ‘ ΣM over M with the covariant
derivative

∇S
X :“

ˆ

∇X
1
n X

´ n
2 KpXq ∇X

˙

.

Then, for any twistor ϕ P ΓpM; ΣMq we have ∇S` ϕ
Dϕ

˘

“ 0. Conversely, if
`ϕ

ψ

˘

P ΓpM; Sq satisfies ∇S`ϕ
ψ

˘

“ 0, then ϕ

is a twistor and ψ “ Dϕ.

Proof. If ϕ P ΓpM; ΣMq is a twistor, then Lemma 3.74 and the last proposition imply that ∇S` ϕ
Dϕ

˘

“ 0.

Now let
`ϕ

ψ

˘

P ΓpM; Sq be ∇S-parallel. By definition of ∇S, we have

∇X ϕ`
1
n

X ¨ ψ “ 0

for all X P VpMq. Multiplying this equation by X we obtain

X∇X ϕ´
1
n
}X}2ψ “ 0 .

Choosing X “ e1, . . . , en for a local ONB and summing the resulting equations yields

Dϕ´ ψ “ 0 ,

which also shows that ϕ is a twistor. �

Remark 3.78. By the last proposition, twistor spinors are in 1:1-correspondence with ∇S-parallel sections of the bundle
S. Since parallel sections on a connected manifold are uniquely determined by their value at one point, we conclude
that a twistor spinor ϕ is uniquely determined by pϕppq, Dϕppqq for an arbitrary p P M and that the twistor space has

dimension at most 2 ¨ 2t
n
2 u.

Theorem 3.79. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. If ϕ P ΓpM; ΣMq is
a nontrivial twistor, then nullϕ :“ tp P M | ϕppq “ 0u is a discrete set.

Proof. Denote `ϕ :“ xϕ, ϕy, the squared length function of the twistor ϕ and let p P nullϕ. Let X, Y P VpMq be
any two vector fields. Firstly, we have

Xp`ϕqppq “ x∇X ϕ, ϕyp ` xϕ,∇X ϕyp “ 0 ,

so that p is a critical point of `ϕ.
Secondly,

YpXp`ϕqqppq “ 2pY<x∇X ϕ, ϕyqp “ ´
2
n

Y<xX ¨Dϕ, ϕyp “ ´
2
n
`

<x∇YpX ¨Dϕq, ϕyp `<xX ¨Dϕ,∇Y ϕyp
˘

“
2
n2 <xX ¨Dϕ, Y ¨Dϕyp “

2
n2 gpX, Yqp}Dϕ}2p .

Hence, the hessian of `ϕ at p is given by

Hessp `ϕpX, Yq “ ∇pd`ϕqpX, Yqp “ ∇Xpd`ϕqpYqp “ XpYp`ϕqqp ´ dp`ϕqpp∇XYpq “
2
n2 gpX, Yqp}Dϕ}2p .

In case Dϕppq ‰ 0, p is a nondegenerate critical point `ϕ and thus an isolated zero point. In case Dϕppq “ 0 we
have ϕ ” 0 by the last remark, which contradicts the assumption of the theorem. �
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Lemma 3.80. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. If ϕ P ΓpM; ΣMq is a
twistor, the functions

Cϕ :“ <xDϕ, ϕy ,

Qϕ :“ }ϕ}2}Dϕ}2 ´ C2
ϕ ´

n
ÿ

j“1

p<xDϕ, ej ¨ ϕyq2 ,

where pe1, . . . , enq is an ONB, are constant.

Proof. Exercise. �

Theorem 3.81. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. If ϕ P ΓpM; ΣMq is
a twistor with }ϕ}2 “ 1, then pM, gq is an Einstein manifold with scalar curvature

scal “
n

4pn´ 1q
pC2

ϕ `Qϕq .

Proof. Since `ϕ ϕ “ 1, we have

0 “ X`ϕ “ 2<x∇X ϕ, ϕy “ ´
2
n
<xX ¨Dϕ, ϕy “

2
n
<xDϕ, X ¨ ϕy .

This automatically implies by Proposition 3.76 that

XxDϕ, Dϕy “ 2<x∇XDϕ, Dϕy “ n<xKpXq ¨ ϕ, Dϕy “ 0 ,

that is, }Dϕ}2 is constant.
Now, for any vector fields X, Y we have

n
2

gpKpXq, Yq “
n
2

gpKpXq, Yq}ϕ}2 “
n
2
<xKpXq ¨ ϕ, Y ¨ ϕy “ <x∇XDϕ, Y ¨ ϕy

“ X<xDϕ, Y ¨ ϕy ´<xDϕ,∇XpY ¨ ϕqy

“ ´<xDϕ,∇XY ¨ ϕy ´<xDϕ, Y ¨∇Y ϕy

“
1
n
<xDϕ, Y ¨ X ¨Dϕy “ ´

1
n

gpX, Yq}Dϕ}2 ,

from which we conclude that KpXq “ 1
n´2

´

scal
2pn´1qX´ ricpXq

¯

is a constant multiple of the identity, i.e., pM, gq
is an Einstein manifold.

Regarding the sectional curvature, we compute

C2
ϕ `Qϕ “ }ϕ}

2}Dϕ}2 ´
n
ÿ

j“1

p<xDϕ, ej ¨ ϕyq2 “ 1 ¨ }Dϕ}2 “ ´
n2

2
gpKpXq, Xq

gpX, Xq

“ ´
n2

2
1

n´ 2

ˆ

scal
2pn´ 1q

´
scal

n

˙

“
n

4pn´ 1q
scal ,

where we have used that for an Einstein manifold with Ric “ λg we have scal “ nλ. �

Corollary 3.82. Let pM, gq be a connected Riemannian spin manifold with a fixed Spin-structure. Assume there exists
a nontrivial twistor ϕ P ΓpM; ΣMq. On N :“ Mznullϕ, set h :“ 1

}ϕ}4 g. Then pN, hq is an Einstein manifold with
nonnegative scalar curvature

scalh “
n

4pn´ 1q
pC2

ϕ `Qϕq .

Proof. Since nullϕ is a discrete set, Mznullϕ is indeed a manifold. The twistor ϕ is obviously also a twistor on
pN, g|Nq. By Proposition 3.75, with e2u “ 1{}ϕ}4, we have that eu{2Ψ´1

u ˝ ϕ P ΓpN, ΣhNq is a twistor with norm

}eu{2Ψ´1
u ˝ ϕ}2 “ eu}Ψ´1

u ˝ ϕ}2 “
1
}ϕ}2

}ϕ}2 “ 1 ,

so that the claim follows from the last Theorem. �

Remark 3.83. One can show that if 4n
n´1 pC

2
ϕ`Qϕq ą 0 then 1{}ϕ}Ψ´1

u ˝ ϕ is the sum of two real killing spinors whereas
if 4n

n´1 pC
2
ϕ `Qϕq “ 0, then 1{}ϕ}Ψ´1

u ˝ ϕ is parallel.
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4. OUTLOOK: SpinC- AND GENERALIZED DIRAC OPERATORS

In this course, we have treated the Spin-Dirac operator, also known as the fundamental or Atiyah-Singer-
Dirac operator. While this is undoubtedly the most important Dirac operator, it is by far not the only one.

First we want to discuss the SpinC-Dirac operator which is motivated by physics. As a starting point we
take Theorem 3.13 which asserted that there is a unique spinor connection ∇ on ΣM satisfying the Leibniz
rule (3.1) w.r.t. Clifford multiplication. While uniqueness is often times a desirable property, it hinders us if we
would like to introduce a magnetic field into the picture, i.e., a certain imaginary valued object. To do this, we
go back to the beginning and consider the spin group and its complex fundamental representation, which was
given by the restriction of an irreducible representation of C`n to Spinpnq,

Spinpnq Ď C`n Ď C`n Ñ EndpΣnq .

The group SpinCpnq is the subgroup of C`˚n generated by Spinpnq and S1. Since Spinpnq X S1 “ t˘1u we can
identify SpinCpnq with Spinpnq ˆZ2 S1 “ Spinpnq ˆ S1{ „, where rg, zs „ r´g,´zs. The group SpinCpnq is now
a double cover for SOpnq ˆUp1q (Up1q » S1), where the covering map is given by

λˆ ` : SpinCpnq Q rg, zs ÞÑ pλpgq, `pzqq “ pλpgq, z2q P SOpnq ˆUp1q .

We again define the fundamental representation of SpinCpnq by the restriction of an irreducible representation
of C`n,

κn : SpinCpnq Ď C`n Ñ EndpΣnq ,
and the statement in Propopsition 1.49 holds verbatim in this case too.

Next we want to define SpinC-structures on an oriented Riemannian manifold pM, gq. To do this, we need
an additional datum, a Up1q-principal fibre bundle Q over M. This object is in general not canonical, i.e., this
represents a degree of freedom.

A SpinC-structure on an oriented Riemannian manifold pM, gq is a pair pP, πq consiting of a SpinCpnq-
principal fibre bundle P over M and a λ ˆ `-equivariant map π : P Ñ SOpM, gq ˆ Q, that is, the following
diagram is commutative,

Pˆ SpinCpnq

πˆλˆ`

��

¨ // P

π

��

πP

((
SOpM, gq ˆQˆ SOpnq ˆUp1q¨ // SOpMq ˆQ

πSOpnqˆπQ

// M

Similarly to the spin case, the existence of SpinC-structures does not depend on the geometry of the manifold,
but only on its topology.

The spinor bundle is now defined as in the spin case,

ΣM :“ Pˆκn Σn .

We also define Clifford multiplication analogously to the spin case and all statements made there hold in the
the SpinC case too.

In order to define the Dirac operator, we need a spinor connection on ΣM. Contrary to the spin situation,
there is no unique lift of the Levi-Civita ∇LC connection to the spin bundle. Rather, we have to choose a connec-
tion ∇L in the complex line bundle L :“ Qˆρ1 C first (here, ρ1 : Up1q Ñ GlpCq is the standard representation of
Up1q, and L is the complex vector bundle associated with Q and ρ1). Assocaited to the pair p∇LC,∇Lq is now
a unique connection ∇ in the spinor bundle ΣM, which is metric and satisfies (3.1). The SpinC-Dirac operator
D is defined analogously to the usual Dirac operator, i.e., as the superposition of the spinor connection and
Clifford multiplication.

For many of the theorems that we have seen in this course there are analogues for the SpinC-Dirac operator.
For example, the Lichnerowicz formula reads

D2 “ ∆`
1
4

scal`
1
2

Ω .

Here, Ω is the curvature of the line bundle L, which, since L is 1-dimensional, is an alternating tensor Ω :
TM‘ TM Ñ iR, and Clifford multiplication can be extended to alternating tensors.

One point that makes the SpinC-Dirac operator attractive is that the class of SpinC manifolds is much larger
than the class of spin manifolds and that it contains the latter. More precisely,
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‚ every spin manifold pM, gq with a fixed Spin-structure P has an associated canonical SpinC-structure
whose Dirac operator can be canonically and isometrically identified with the Spin-Dirac operator we
started with.

‚ Every (almost) complex manifold carries a canonical SpinC-structure.

The last subject we want to touch briefly is that of generalized Dirac operators. The question we ask our-
selves is: Can we abstract the Spin-Dirac operator to create a framework for operators which behave like the
Spin-Dirac operator? One way to do this is via so-called Dirac bundles (see [LM89]; but note that there are
even more general notions of Dirac operators). Given a Riemannian manifold pM, gq, a Dirac bundle is a triple
pS, µ,∇Sqwhere

‚ S is a vector bundle over M equipped with a bundle metric,
‚ µ : TMb S Q Xb σ ÞÑ µpXb σq “: X ¨ σ P S is a vector bundle homomorphism satisfying the Clifford

relations

X ¨ pY ¨ σq `Y ¨ pX ¨ σq “ ´2gpX, Yqσ for all X, Y P Tx M, σ P Sx, x P M ,

and which is orthogonal w.r.t. the bundle metric of S, i.e.,

xX ¨ σ, X ¨ τy “ xσ, τy

for all X P Tx M with }X} “ 1, σ P Sx, x P M,
‚ ∇S is a metric covariant derivative in S satisfying

∇S
X pY ¨ ϕq “ ∇LC

X Y ¨ ϕ`Y ¨∇S
X ϕ for all X, Y P VpMq, ϕ P ΓpM, Sq .

Given a Dirac bundle pS, µ,∇Sq over a Riemannian manifold pM, gq, the associated (generalized) Dirac
operator is defined as

D : ΓpM, Sq ∇S
ÝÝÑ ΓpM, T˚Mb Sq 7bid

ÝÝÝÑ ΓpM, TMb Sq
µ
ÝÑ ΓpM, Sq ,

and is given locally by the familiar formula

Dϕ “
n
ÿ

j“1

ej ¨∇S
ej

ϕ .

Having made this definition, the question is whether there are any generalized Dirac operators. Certainly,
every Spin-Dirac and SpinC-Dirac operator is a generalized Dirac operator. But are there any others?

One example is given by twisted Dirac operators. Suppose you are given a Riemannian SpinpCq manifold
pM, gq with fixed SpinpCq-structure. Take any vector bundle E over M and equip it with a bundle metric and a
metric connection ∇E. We define

‚ S :“ ΣMb E,
‚ Clifford multiplication µS on S is just Clifford multiplication on the first factor, i.e.,

X ¨ pσb τq :“ pX ¨ σq b τ ,

‚ ∇S as the canonical tensor product connection, i.e.,

∇S
Xpϕb ψq :“ ∇ΣM

X ϕb ψ` ϕb∇E
Xψ .

Routine calculations show that pS, µS,∇Sq is a Dirac bundle. The associated generalized Dirac operator is
called the twisted Dirac operator with coefficients in E.

Generalized Dirac operators enjoy many of properties of the Spin-Dirac operator that we proved in this
course, e.g.,

‚ Dp f ϕq “ grad f ¨ ϕ` f Dpϕq for all f P C8pMq, ϕ P ΓpM, Sq,
‚ Lichnerowicz fomulue

D2 “ ∆S `R

where R is a certain function given in terms of the curvature tensor of S.

Often times, by choosing the right Dirac bundle, it is possible to connect the geometry with the topology of
the underlying manifold through the associated Lichnerowicz formula and index theory (see [LM89]).
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